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Introduction 

Any paper normally kicks off with an introduction on how important the 
respective topic is the world of science. Of course, I should do same. However, 
the potential audience of this essay is very likely to be interested in organisms 
and their energy management and I have therefore decided to refrain from this 
obligation and immediately step to the essence of writing this essay: deepening 
one’s understanding of the Dynamic Energy Budget (DEB) theory, which is 
more than challenging enough. 

Bas Kooijman believes that there are elementary rules of energy management 
that are similar across all organisms and this has lead him to build the DEB 
theory {Kooijman, 2000 #599}. These elementary assumptions are translated 
into mathematical equations that either describe the growth of an organism in 
terms of energy, length or mass. In his book there are a substantial amount of 
figures in which the DEB equations fit the observations convincingly well. 
From these fits the underlying governing DEB-parameter are deduced.  

In our institute we study mass dynamics by tracing the fate of food sources that 
are enriched in their isotope composition, through the food web. The initial use 
of stable isotopes was aimed at qualitatively distinguishing food sources of 
organisms in field situations (eg. Fry, 1999 #189) and trying to estimate their 
trophic position {Minagawa, 1984 #188}. In more recent years the use of stable 
isotope tracer studies have provided valuable information on the element 
dynamics ranging from whole ecosystem studies (Hall, 1998 #185; Tank, 2000 
#167), more confined field studies (Middelburg, 2000 #122) to mesocosm 
studies (Norrman, 1995 #357; Moodley, 2000 #123). These tracer studies bear 
resemblance with more common radioisotope studies, but the main advantage 
lies in the possibility of field application and the lack of legal restrictions. The 
basic essential compounds treated in the DEB theory are C, H, O and N, for 
which carbon (12C – 13C), nitrogen (14N – 15N) and oxygen (16O – 18O) stable 
isotopes exist. 

Building upon the valuable quantitative information the isotope tracer studies 
have generated on mass dynamics in a variety of biological systems, it is 
tempting to speculate on the potentials in a DEB context. For example, suppose 
that at one point in the Von Bartalanffy growth curve, one supplies an animal 
with a food pulse that is strongly enriched in one particular isotope: after an 
initial loss in the assimilation step there is enrichment of the reserve 
compounds and, after again some losses, subsequent incorporation into 
structural compounds. Hence, besides the growth curve additional dynamical 



information is available, which might allow additional DEB-parameters to be 
estimated from the same experimental setting. 

In this essay I explore the possibility of extracting additional DEB-parameters 
from an experimental setting in which a Von Bartalanffy growth curve is 
measured by giving an enriched food pulses. In the discussion some additional 
possibilities will be briefly described. I realize that this analysis is neither 
complete nor exhaustive, but implementation of the DEB-isotope model took 
more effort than expected and therefore the subsequent section is limited due to 
time constraints. Although the eventual aim should be a practical experimental 
design, I leave that translation for the creative experimenter, amongst others 
because practical problems are highly case study dependent.  

Theoretical background 

DEB theory 

This section will contain nothing new for the DEB diehards among us. 
Nevertheless, a brief introduction into some of the basic DEB equations is 
required for understanding the analysis offered here, especially as the stable 
isotope equations have to be plugged in later on. For simplicity, I will only talk 
about ectothermic isomorphs. 

DEB treats an organism as consisting of two state variables, namely a 
generalized compound reserve and a generalized compounds structure. With 
generalized compound it is meant that its composition doesn’t change over 
time (i.e. strong homeostasis assumption). Assimilated food adds up to 
reserve’s, which are expressed as a reserve density (i.e. reserve energy per 
structural energy). The use of reserves does not directly depend on food intake, 
but only on the reserve density. Although the basic unit of DEB is energy, a link 
with stable isotopes requires mass equations.  Hence, the DEB mass equations, 
expressed in carbon units, are used in this essay. The dynamics of the reserve 
density is given by 
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This reserve density equation based on energy follows from the absolute 
description of reserve energy E , which is given by 
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The other state variable is structure, as derived in chapter 3 of {Kooijman, 2000 
#599} its differential equation follows directly from the assumptions underlying 
the DEB theory (note that heating drops from the equation) 
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Not all catabolic power is possible candidate for growth. More specifically a 
fixed κ -fraction of the catabolic power is used primarily for somatic 
maintenance and the remaining part is used for structural growth. The κ−1  
fraction is spent on development and reproduction. In equation 4 the terms are 
explicitly separated into the total amount of energy spent on growth and 
maintenance and the sole maintenance term. All costs are paid directly from the 
reserve material. 

Stable isotope notation 

It is instructive here to introduce some definitions on stable isotope notation. 
The isotope ratio is always given by the ratio of the heavy isotope over the light 
isotope 
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with the pro-mille deviation from a reference material given by the delta 
notation 
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Hence, Isotopeheavyδ  indicates the pro-mille deviation of the ratio of Isotopeheavy  

over Isotopelight  in a sample from the reference material. In nature the lighter 

isotope always dominates over the heavier isotope and I will therefore refer to 
them as abundant and rare isotopes, respectively. 

Embedding stable isotopes into DEB 

The basic equations underlying DEB and the stable isotope notation are now 
present; the next step is to link them. It is assumed that the rare isotopes are 
instantly diluted into the destination pool.  

Hence, the whole isotope model is given by the reserve density  
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the structural dynamics 
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the rare isotope dynamics in reserves 
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and the rare isotope dynamics in structural mass 
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EMI  and VMI  is the mass of the rare isotope in reserve and structure, 

respectively. F  stands for the fraction of the rare isotope (see equation 6), the 
subscript refers to the respective compound, following standard DEB notation. 
The parameter vk  is equation 11 is the fraction of maintenance that is directly 



used for turnover of structures. The fraction vk−1  is used for maintenance 

without affecting the structural isotope value, whereas the vk  fraction of 

maintenance is used for turnover of structural compounds and thereby 
influences the structural isotope value. The implication is that when vk  

amounts to zero, that part of an enriched food pulse that gets embedded in 
structural mass is destined to remain in structure. If vk  is only slightly higher 

than zero, this implies that the isotope value of structure will eventually return 
to the isotope value of the non-enriched food.  

Because of the isotope equations, the whole system governing the dynamics of 
the organism has changed from 2 to 4 equations. However, also one additional 
assumption is required: the isotopes dilute instantly into the destination pool. 
Also the additional parameter Vk  is needed to describe the isotopes dynamics.  

Implications 

In the next steps, I attempt to determine what information can be gained from 
the 4 equation system compared to the 2 equation system and suggest some 
other roads for exploration.  

To illustrate the dynamics of the DEB-isotope model a simulation was run (Fig. 
1). From the simulation it is clear that the reserves converge more swiftly 
towards the isotope value of the enriched food pulse, whereas the lag in 
structure is larger. This situation is to be expected in all organisms, since the 
reserves are the entry stage for any food compounds. In the standard DEB 
equations, the reserve density remains constant through the growth curve and 
its value is fixed by the parameters f  and Emm . In the DEB-isotope model 

however, the turnover time of the reserves can be estimated from the rate of 
appearance and disappearance of the relative amount of rare isotope. The 
combination of the two estimates fixes the reserve dynamics more strongly. 

In fact, similar reasoning holds true for the structures. Although from the 
growth curve several compound parameters can be estimated, again the 
turnover time can be estimated from the increase of the rare isotopes in 
response to the enriched food pulse. Moreover, vk  can be estimated from the 

difference between the rate of appearance and disappearance rate of the rare 
isotope. More specifically, a skewness towards a higher rate of increase in the 
rare isotope compared to the abundant isotope points towards Vk  being smaller 

than one. 



Other possible applications 

Although crucial in DEB, reserve density remains a rather illusive state variable 
whose value is only to be determined by indirect measurements. In the DEB 
model, any assimilated compound initially enters the reserves before being 
available for other destinations. Moreover, the strong homeostasis assumption 
and partitionability implies that all reserve compounds have similar kinetics 
(page 84 in {Kooijman, 2000 #599}. From the above an interesting case can be 
deduced. Suppose one collects an organism from the field and after a short 
acclimatization period one supplies the organism with an excessive food pulse 
that consists of only the (in nature) rare isotope (Fig. 2). The result is that the 
abundant isotope value follows the curve of a depletion of reserves, whereas 
from the rare isotope dynamics the rate and maximum amount of reserves can 
be estimated. The depletion curve of the abundant isotope allows that the field 
value of reserve density can be estimated. From the dynamics of the rare 
isotopes in the reserves the maximum reserve density can be estimated. And 
from the combined dynamics one is able to estimate the turnover of the 
reserves. Of course, the above case can only be applied is one is able to 
designate a particular compound that solely (or at least mainly) belongs to the 
reserves.  

The latter remark leads to another interesting application. From the pulse of 
enriched food one might be able to single out the contribution of different 
compounds to reserves. It is technically possible to separate an organism into 
different lipids, amino acids and carbohydrates. As the initial and maximal 
enrichment will be found in the compounds belonging to the reserves, isotope 
data on these compounds may thereby aid in recognizing the composition.  

Conclusions 

In general, it is true that the quality of fitted parameter increases with the 
number of data points. Hence, it can be expected that the error margin 
associated with a fitted parameter will be smaller when also isotope data are 
available. Although, the increase in fitting power might be substantial, the true 
power of the use of isotopes lies in the additional compound parameters that 
can be estimated from the use of isotope enriched food sources. I think I have 
shown that the possibilities are plentiful.  
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Fig. 1.  Dynamics of the DEB-isotope model. The x-axis is in days and the y-axis 
in carbon mass. The upper constant line in the ‘reserve density’ figure is reserve 
density, the line with the dip is the ratio of the abundant isotope over total 
structure and the line with the bump is the ration of the rare isotope over total 
structure. For the remaining figures holds that the upper line is always the sum 
of the abundant and rare isotope, the line showing a dip is the abundant 
isotope and the line with the bump is the rare isotope. Parameter settings: Vk  is 

1, { }XAmJ
�

 is 2, Emm  is 1, [ ]VM  is 1, EVy  is 1, EXy  is 1, κ  is 0.8 and Mk
�

 is 0.4, 

0, =tVM  is 0.01. During the whole virtual experiment the scaled food density was 

1, with 011.0=xF . However, between 20=t  and 30=t  the organism was fed 

enriched food with 50.0=XF . 
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Fig 2. Dynamics of a field collected animal that was supposed to be feeding at a 
scaled feeding response of 1 prior to collection. Between 41=t  and 42=t  the 
organism was given a food pulse with 1=XF . In the ‘reserve density’ figure the 

steadily decreasing line corresponds to the ratio of the abundant isotope over 
the total structural mass. The top irregular line is the reserve density and the 
lower irregular line the ratio of the rare isotope over the total structural mass. 
In the ‘reserve’ figure the steadily decreasing line is the amount of abundant 
isotope in the reserves, the top irregular line corresponds to the total amount of 
reserves and the lower irregular line is the amount of rare isotope is the 
reserves. Other parameters as in figure 1.  
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