
 
 

FIRST PART OF THE ESSAY: 
“A general paragraph about the items in the subprogram that you thought were most inspiring, or 

difficult, or in need for further research.”  
 

Structural Homeostasis, Weak Homeostasis and Reserve Dynamics 
S. Pouvreau, L. Pecquerie, Y. Bourles, X. Bodiguel, M. Alunno-bruscia 

 
The Homeostasis concept is one of the cornerstone of the DEB theory. In Chapter 7, there is a very interesting 
part concerning homeostasis, more precisely structural homeostasis. For me, the concept of homeostasis sound 
nice in physiology: cells achieve full controls over all transformations with the help of enzymes. The properties 
of enzymes depend on their micro-environment. So a constant chemical composition, i.e. homeostasis, appears to 
be essential for full control.  
Structural mass (V,MV) and reserve (E,ME) do not change in composition: this is the strong homeostasis 
assumption. But, the amount of reserves can change relative to the amount of structure, depending on food 
densities (f). When food density does not change during the life cycle, the individual is in a state equilibrium, 
reserves and structure are in constant proportion: this is the weak homeostasis assumption. The essential point 
of this assumption is that, under constant environmental conditions, the individual grow in such a way the 
reserve density [E] does not change (see figure 1). So, this assumption is crucial since it helps to determine the 
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A first demonstration of this formula is given at {83-85} and other one at {247-249}. The aim of my essay, with 
the help of my colleagues, is to go back on these two demonstrations. 
 
First demonstration {83-85}: 
 
Since energy capacity of the blood is small, the variation of energy in blood is assume to be closed to 0, which 
means that the dynamic of energy reserves can be written as (conservation law): 
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The dynamics of the reserves follows from three important requirements: 
1. The reserve dynamics should be partitionable; 
2. The reserve density ([E]=E/V) at steady state (food density and temperature are constant) should not depend 

on structural body mass (V). This is the weak homeostasis assumption; 
3. The use of reserves should not directly relate to food availability. 
 
These three requirements are very important for the axiomatic approach concerning the reserve density 
dynamics. The dynamics for the reserve density has to be set up first, in a general form, as following: 
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the model ? 
 
[E] varies according to an assimilation rate and an utilisation rate (here, the F function) that depends on V, but 
also on [E]. 
 
Weak homeostasis says that, at equilibrium (f=cst, d[E]/dt=0), [E] is independent of V. But [pA] is a function of 
V2/3/V=V -1/3. So at equilibrium ([E]*), when weak homeostasis can be apply, it is necessary to have : 
F([E]*,V)=H([E]*/ θ) . V-1/3, to obtain [E] independent of V. 
 
For non-equilibrium conditions, we must have a function, called G that depends on V but that must disappear at 
steady state, so we need to multiply it by ([E]*-[E]). The general form for the reserve density is therefore: 
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[pA] and [E]* depend on food density. But the third requirement implies that d[E]/dt is not directly linked to 
food density, so G must be set to zero. We are not sure to have fully understood this last step ? 
 
If this last step is correct, the axiomatic approach gives : 
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By using the first requirement (partitionability of reserve dynamics) , it is relatively clear to me that H ([E],θ) is 
in fact a first-degree homogeneous function (f(x)=ax) since it follows kAH([E],θ) =H(kA[E], θ) so 

[ ]( ) [ ]EEH ν&= . Consequently, we obtain the famous first order equation : 
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The major problem for me is that this equation is a simplification of the general mathematical equation (in which 
I’m completely agree) : 
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Are these two equations (7.23 and 3.10) identical ? For me, they are not identical (see figure in annexe). And on 
page 249, we can see that in fact equation 7.23 is a simplification of equation 7.21 (see below). This 
simplification seems to be correct only if g>>1, in other word only if [Eg]>>[Em] (since k is close to 1). 
 
The volume specific catabolic flux (3.9) is obtained by saying that: 
 

equation 7.23=equation 3.10 
 
So, for me, this equality is an approximation that is only possible when [Eg] >> [Em]. If not, this equality is 
violated, and [pc] cannot be approximated by (3.9). 
 
 
Second demonstration {247-249}: 
 
In chapter 7.6, there is another approach (a structural approach) to demonstrate, at a cellular level, the first order 
process for dynamic reserve density. This other approach used the structural homeostasis assumption, that is like 
a structural mechanism behind the weak homeostasis assumption. 
 
In order to have a reserve precursor density constant in the cytosol (for optimal enzyme kinetics), we need to 
have a constant carriers (enzyme+molecule) density on the cell + vesicle membranes. The density of carriers on 
membrane is proportional to the surface area of membrane {Mc}. At substrate constant, density of carriers is 
constant if {Mc}=Mc/V2/3 is constant (structural homeostasis): Mc=αV2/3. 
 
In other word, the structural homeostasis implies that there is a direct coupling between the linear dimensions of 
the n vesicles (li) and the linear dimension of the cell (L). 
 
Structural homeostasis implies li/L=cste � L=αl i  
 

The total amount of membranes (external membrane + vesicle membrane) in a cell is named Mc. Mc is 
proportional to (li+L).² so to L² because of structural homeostasis. So we have: 
 
Mc=αL² (equation A) 
 



Weak homeostasis implies [E]=cste � E=αV (equation B) 
 
Equation A + B gives that both homeostasis implies Mc/E=αL²/V � Mc=αE.V-1/3 (Equation in figure 7.21) 
 
A cell contains n vesicles. We named Ei and Mi, the energy reserve and the amount of membrane for vesicle i. If 
a cell contains n vesicles, we have : E=nEi, E=nV[Ei], [E]=n[Ei] and Mc=n{Mci}. So: Mc=n{Mci}V 2/3=[E]/[Ei] 
{Mci}V 2/3. And consequently dynamics for Mc follows equation (7.18).  
 
The dynamics of the amount of membranes MC can also be obtain with the DEB theory (equation 7.13, below): 
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power into MC and kC a decay rate of destruction of membranes. 
 
Similarly, for structural volume, we can write that: 
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This equation, Equation 7.14, can also be obtained on the basis of : 
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We need to write : VGVC κηη =  that I don’t understand ? 

 
 
We have: 
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 Equation 3.7 

 
With (7.14), we can deduce dV/dt and replace it in 3.7. That’s give the catabolic flux equation in (7.16). Using 
(7.16), (7.13) and (7.18), we can deduce the complete formulas for d[E]/dt (equation 7.21) at a cellular level. 
 
This equation is strongly different than equation  than equation 3.10, and need to be simplified in order to 
obtain the equation 7.23. There is several simplification steps, than can be summarised as follows : 
 
1. Membrane kinetics is very fast with respect to reserve kinetics 
2. [Eg]>>[Em] 
 
 
 



SECOND PART OF THE ESSAY: 
 

“A specific paragraph about how you plan to apply the theory in your own research.” 
 
 
S. Pouvreau: 
 
Physiological models explaining growth and reproduction of molluscs in their environment in relation to food 
supplies have already been achieved on numerous bivalves species. Generally, these models are based on the 
widely used scope for growth concept. During my PhD, I have developed such a model (Pouvreau et al., 2000) 
for the pearl oyster, Pinctada margaritifera. But I found in the SFG theory many inconsistencies, at several 
levels. 
 
Firstly, I was really annoyed with the allometric equation (Y=aWb)and especially the allometric exponent (b). At 
this period, it was clear to me that the weight (W) should be a somatic weight and b a constant value within a 
specie and between species. And that this value could only differ according to the process 
(anabolism/catabolism). For pearl oyster, I try to demonstrate this with filtration rate measurement (Pouvreau et 
al., 1999).  
Secondly, I was really annoyed with the SFG concept itself where respiration rate appears as a ‘strange black 
box’, hastily subtracted to assimilation. During this period, I had not enough time to try to apply another 
approach. I tried to read the first edition of the Kooijman book, and I found it too‘hard’ and too complicate. So I 
take a more ‘easy road’ : the scope for growth. 
 
After the DEB course, it appears clearly for me that this ‘easy road’ is not the good one and it is probably a blind 
alley. I was really attracted by the first chapter of the DEB book:  (1) the radical rejection of the standard 
application of allometric equations, that restrict the usefulness of almost all existing theories on energetics, (2) 
the axiomatic approach like physician of the theory, and (3) the major role playing by a necessary storage 
compartment-buffer since it is true that individuals react slowly to changes in their feeding conditions. 
Concerning this point of view, the SFG concept is too ‘reactive’. 
 
Now, I work on the ecophysiology of growth and reproduction of commercial bivalves (mainly oysters). My 
scientific aim is to clearly understand how a bivalve modifies its growth and reproduction according to its 
environment (physics parameter and food supply). There is a lot of practical applications for this scientific field: 
zootechnical optimization in hatchery, carrying capacity of ecosystem, impact studies in case of environmental 
changes…. To reach this aim, I and other colleagues (M. alunno-bruscia, and our phD Y. Bourles) are trying to 
build mechanistic models for growth (adult and larvae) and reproduction for several bivalves and filter-feeders 
(C. gigas, P. margaritifera, C. fornicata…). In my opinion, it can be helpful to use the DEB concept in our 
modelling approach. We have translate the code given in the paper  of van der Veer et al. (2001) to adapt it to 
our species under STELLA software. We have a phD student (Y. Bourles) that is working on it to evaluate its 
robustness. Nevertheless, I have still some questions and doubt concerning dynamics of reserves, see our essays. 
 
The major bottlenecks would be, in my opinion, the acquisition of some parameters. We have experimental 
facilities  (marine laboratory with algae culture room adapted to grow filter-feeders) and several field-tool 
(ecophysiological systems). But, I’m still not sure to really know how to use them to obtain DEB parameters: 
[Eg] and kappa for example. Perhaps, also that some DEB concept concerning the way that gametes production 
is treated would perhaps do not work with our species. The emersion time for our intertidal specie appears also 
to me as a problem, concerning the DEB theory. I hope that the several steps of validation will help us to solve 
this problem. 
 
 
L. Pecquerie: 
During spring surveys, we observe a high individual variability of lengths among the one-year-old anchovy 
cohort. We hypothesize that this variability is mainly due to differences in the hatching dates, the life histories 
and/or the genotypes. As almost all the one-year-old cohort is able to spawn in spring, we would like to study the 
impact of this variability on both spatial and temporal spawning distribution under different environmental 
conditions (temperature and food). For this purpose, we need to model the growth and reproduction of the 
anchovy population according to the environment.  
 
The food and temperature variables are given by a 3D hydrodynamic model coupled to a primary production 
model. We choose to model the growth of a mean individual according to the DEB theory. We will have to 



specify the way the reproduction buffer will be handled, as the batch fecundity of the individuals is 
indeterminate (environmental determinism). The variability of growth will be introduced by different hatching 
dates and trajectories of individuals over the continental shelf of the Bay of Biscay. The parameter values of the 
DEB model will first be the same for each individual. If it does not fit the variability observed in the data, 
different set of parameters  
 
 
X. Bodiguel:  
Polychlorinated Biphenyls (PCBs), are characterized by a high persistence in the environment, a 
bioaccumulation by the marine organisms and a potentially toxic character. The bioaccumulation depends on the 
physical and chemical properties of the compounds and biological factors like feeding, growth and reproduction. 
With a high trophic level, the Mediterranean hake is potentially exposed to these contaminants and it is 
significant to evaluate its contamination level and its contamination mechanisms. 
 
We choose to model the bioaccumulation phenomenon according to the DEB theory. First, we will have to 
model the growth of male and female hakes, and then, to simulate the contaminant bioaccumulation (especially 
organic contaminants) during their life. We will have to specify the contaminant kinetics according to their 
chemical properties: lipid associated for the organic contaminants (Log Kow>6), and protein associated for the 
metallic ones. Finally, we will have to extend the individual model to the whole population and eventually to the 
trophic web.  
 
 
Y. Bourles:  
 
Several physiological and bioenergetic models of the growth and the reproduction of the Pacific oyster 
(Crassostrea gigas) are already available in the literature. But most of them exhibit two recurrent limits: (1) they 
do not allow to simulate properly the growth and reproduction of C. gigas over time (i.e. over a year), especially 
during the summer at the end of their gametogenesis; (2) furthermore, they cannot be applied to other shellfish 
culture areas or ecosystems than where they are developed. Thus, it appears as an evidence that a generic model 
which can answers these two limits is lacking. Such a model will be very useful to simulate and compare the 
ecophysiological behaviour of C. gigas in different ecosystems all along the year. And perhaps it would become 
a strong tool to understand the huge intra-specific variability and the wide extent of this species. In a more 
concrete application, the accurate simulation of such a model of the growth of C. gigas in a given site could be 
used to estimate the trophic capacity of this site (or at the opposite, the ultimate density of oysters the site can 
support for a known food density and temperature through the year). 
A preliminary attempt of a DEB model based on a work of van der Veer et al. (2001) on flatfish was applied to 
C. gigas (experimental conditions, with cultivated phytoplankton inflow). In this preliminary step, this model 
fitted pretty well to the observed growth. As we feel that the DEB theory can be a new approach stronger and 
wider than the generalized Scope For Growth approach for instance, we want to test it to build our generic model 
of the ecophysiology of the Pacific oyster. First, we want to check the DEB parameters in various experiments 
and then we would like to confront the model in development to data sets from different natural sites, to compare 
and to verify the simulations are faithful with the reported data. We hope to improve our generic model step by 
step, making it more complex (as it would be necessary) in respect to the various specificities of the different 
areas. 
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Although f is constant, [E] 
varies = dilution by growth 
(a new cell has less energy 

reserve than the mother 
cells), that gives : 

When f is constant, [E] does 
NOT vary = no dilution by 
growth (a new cell has the 

same energy reserve than the 
mother cells), that gives : 

The problem concerning the dynamic of reserves : what 
is the dilution by growth ? 

= It is a theoretical cell of volume Vi 
and reserve Ei (or E’i) 

Somatic 
growth 

Somatic 
growth 

= DEB theory  at 
equilibrium, weak 

homeostatis, no dilution by 
growth ? 

= DEB theory  out 
of  equilibrium. 
General case for 

growth ? 


