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1. INTRODUCTION

Dynamic Energy Budget (DEB) theory is an approach to model mass
and energy flows of (biological) individuals. Tt is a general starting point
since all forms of life we know are almost by definition shaped by the
mass and energy flows that flow through them. Although in principle
these flows can take on different forms, the key to life lies in the chemical
energy that allows an organism to grow and maintain its existence.

In principle DEB works the same for all organisms in spite of very big
differences in the precise structure of the underlying chemical reaction
networks, and for this reason we might expect that there is somehow a
general scheme which applies to how these chemical reaction networks
are build up on the one hand, and on the other hand that somehow a
general principle may work as to how chemical networks either manifest
their behavioral patterns on a macroscopic scale.

We hope that by investigating what microscopic principles may lie be-
hind DEB that we gain insight into this world, thereby reaching towards
scientists who try to do just that by reconstructing microscopic reac-
tion networks from microscopic observations. Perhaps we may even find
some cases where slight modifications/additions to DEB theory could be
relevant. Taking this biological world as a study object can be very re-
warding also from a physics point of view we believe, since through its
study we may learn how far from equilibrium systems behave and are
well described. As a starting point we here look into a imaginary world
that should lie somewhere in between the macroscopic world of DEB and
the microscopic world of highly complex chemical reaction networks.

1.1. Core DEB theory. In this work we will try to find a mesoscopic
description that coincides with what we will call core DEB theory. It is
the simplest description possible of an isomorphic ectothermic organism
within DEB theory and describes the dynamics of one Reserve E and one
Structure V with the following two differential equations
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k»V) the catabolic rate, and [py] the volume specific maintenance cost
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(a constant)?. Conform the notation in the DEB book we use [E] = E/V,
and have defined K = [Eg]/k. We have so far and shall continue to stick
to the notation used in the DEB book as much as possible. Let it be
clear that the above serves in no way as an explanation for DEB theory
for that we refer to the book [1].

2. MobpEL 1

For starters we try to stay as close as possible to the statespace of the
most simple DEB model where there is only structure V and reserve E:
Q = (E,V) = R"2 The reality that we imagine behind this statespace
is that structure is in fact a reaction complex that can reconstruct it-
self by consuming a fixed quantity of reserve which is a set of smaller
high-energetic molecules, the nutrients. By assuming homeostasis of the
chemical composition of structure we avoid the complication of changing
dynamics, also the volume of the cell is now proportional to the amount
of structure V.

2.1. Assimilation. Only the smaller molecules get transported over a
cell membrane and therefore only reserve may be assimilated directly
from the environment. The rate at which this assimilation takes place
pa depends on the amount of receptors in the membrane and of course
the availability of nutrients X in the environment. The amount of recep-
tors in the membrane is the size of the membrane A times the density
of receptors in the membrane p, =constant. At least some of the frac-
tion of this transport is active and therefore a small amount of reserve is
needed to assimilate one amount of reserve, this decreases the efficiency
7 of the assimilation. The fact that the receptors have a limited capacity
(it takes some finite amount of time to deal with a molecule) causes a
Michaelis-Menten type behavior® in terms of the concentration of nutri-
ents outside the cell X, with an associated M-M concentration X and
maximal throughput rate v,,.

A = NPgA——v 3

Pa=npuA s v (3)

with f = Xf—XK, A = ¢V?3 for isomorphs and 1p,cv,, = {Pam} this is
(not surprisingly) equivalent with the result found in DEB.

pa = {Dam} FV?? (4)

20ther constants are the ”surface-area specific maximum assimilation rate” {pam },
the ”saturation coefficient of food” X, the "energy conductance” ¥, the "mainte-
nance rate coefficient” ky; and the ”fraction of catabolic power spent on maintenance
plus growth” k.

3in principle this is valid only for a system in steady-state very far from equilibrium
but here we make the quasi steady state assumption QSSA, see for instance [2].
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2.2. Reactions. We imagine two relevant processes: creation of struc-
ture from reserve and spontaneous decay of structure. In order to create
structure, free reserve Er needs to bind to unoccupied or free structure
Vg which then becomes bound in a structure/reserve complex V-E.

with [Eg] the volume specific costs for growth, we however may rescale
E so that [Eg] = 1, without loss of generality. The total reserve is the
sum of free and bound reserve E = Er + V-E; analogously for structure
V=Vrp+ V-E.

Even though it seems we couldn’t be farther away from reality [3], we
assume that the contents of the cell are well mixed. In practice this
means that all correlations and therefore organization in time-space is
disregarded, but this should hardly affect the mean characteristics of
the reactions. Omne unit of reserve then binds at a rate proportional
to the density of free structure with rp the proportionality constant,

so the total binding rate for reserve becomes EF¥7"B- Unbinding of
the structure/reserve complex into free structure and reserve goes at a
rate V-Ery. Lastly (free) structure is created at a rate 2V-Erg thereby
consuming structure/reserve complex at a rate V-Erg.

The ”spontaneous”* decay of structure is assumed to be independent of
the state it is in so

with rates Vprp and V-Erp respectively.
The differential equations that follow for reserve and structure are

Lr — pa—BpXFro+ VE(ry +rp) (8)
%:VF%TB—V'E(TU—FTR—FTD) (9)
e = VB (ry + 2rg) — Vp(£rp +rp) (10)

2.3. Analysis model I. The central question we seek to answer in this
subsection is: to what extent do the differential equations of core DEB
(1)-(2) coincide with the differential equations (8)-(10) of model I?

In order for the reserve dynamics of model I to coincide with DEB theory,
the catabolic rate (what is consumed of reserve) has to display Michaelis-
Menten behavior in terms of the reserve concentration (compare to (3.44)
on page 111 in [1]). Moreover the maintenance should be proportional to
structure. Here we show how to see that this is at least approximately
the case for model I.

Reasoning qualitatively towards our goal we notice two main points.
1.) The system closely resembles a normal enzymatic reaction system
with two notable differences: The substrate concentration is subject to

4The denaturation of most proteins is in fact regulated by the cell, but this should
not influence the rates of decay in its dependency on V[4].



4

change and the product is structure itself creating an additional flow.
Both influences will be investigated in the course of this text.
2.)Structure deteriorates with a rate proportional to the amount of struc-
ture, so of total growth a fraction proportional to the amount of structure
is needed to compensate for this effect. We interpret that fraction as the
maintenance that needs to be done on the structure and it should be
closely related to what is called maintenance in DEB.

To allow a better interpretation we rewrite the above set of differential
equations in terms of reserve E = Erp+ VE | total structure V= Vy+ V-E
and fraction of bound structure pgp = V-E/V = [V-E]

G = Da— D (11)
G =106—Vrp (12)
dg;f = [Er](1 = pB)7B — pBTU — pB(L+ PB)TR (13)

where pL, = Vppr.

2.4. Quasi steady state assumption. The only thing needed to let
(11)-(13) coincide with core DEB is to assume a quasi steady state
(QSSA) for (13). Here we can validate the QSSA in the limit of fast
binding and unbinding and in the limit of a high free reserve to bound
reserve ratio.
To see this, take rg — oo while ry;/rp = K'. In that case the density of
bound structure will always go immediately to its quasi-stationary value
given some reserve density. This is clear from the above set of differen-
tial equations because the first two equations do not depend on ry or
rp. If we would additionally have [Er] — [E]/a the Michaelis-Menten
form would follow. We see then that the third differential equation above
would have the following limit
. . dPB . . % [E]

e a e At O (el bareme PP = ]+ ok (14)
The catabolic rate is then also according to the DEB model, except for
the fact that cell surface effects have not been taken into account and
that therefore the term proportional to surface area in the catabolic rate
of the core DEB model is not represented.

E]

li T — \% 15
[EF]E?E]/Q 7”BILHOO be [E] + aK’ R (15)
Since it is inconsistent to take [Er] — [E]/a generally, it seems only

reasonable to check the quasi stationary solution of (13) more generally.
We then find with [Er] = [E] — ps

d
lim P2 =0 = lim pf = Z([E]) — VZ(E])? - [E] (16)
rg—oo  dt B —00
where Z([E]) = ([E] + 1+ K')/2. This is clearly not M-M behavior, it
is however a close approximation as can be seen from the accompanying
Figure 1.
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FIGURE 1. The solid line (——) is a normalized
Michaelis-Menten function (14), the dashed line (- - - -)
is the function from (16), the dashed dotted line (-.-.-.-) is
10x the difference between these plots.

We have shown that by model I we can represent core DEB theory al-
most completely given some approximations. It will be interesting to see
however to what extent the coincidence will hold if the assumptions are
relieved.

3. MobDEL I1

In this section we define a model that takes surface effect of the growth
of a cell into account. In this way we make the link with DEB theory
complete.

3.1. Geometrical considerations. In reality the structure of a cell
consists of two main parts that behave differently as the cell grows: a
volume part and a surface part here for convenience referred to as inte-
rior (structure) I and membrane M respectively that together make up
structure V. The membrane of a cell is not necessarily the only thing
that contributes to membrane, other structures in the cell may also grow
as a surface, this should however not interfere with the current consider-
ations. The dynamics for structure of model I will be taken as a reference
for the dynamics of the plasm. For isomorphs the characteristic length
L will change as M'/? and as I'/3.
dL  dM'V? dI'/3

at S T at T (17)
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so then we derive, using the dynamics of model I for the interior

dM — 2MdI 2

dt 3 I dt gM(PBTR —TD) (18)

where now pp = Ig/I.

Thus inversely it follows that —however the membrane growth is regulated
by the cell (and it certainly is)— if we assume exactly the same dynamics
for the growth of the membrane as for the growth of the interior, the
organism will grow isomorphically without any further regulation. On
the other hand we also notice that it seems that what is called mainte-
nance in DEB theory is missing a term accounting for maintenance of
the membrane.

3.2. The model. A naive mesoscopic model that reproduces core DEB
theory approximately would then be

e = {pam} [(X)M — [Ep](Iprpr + Mpraum)
+ Ig(rur +7pr) + M(row +7om)  (19)

e = [Ep|(Iprpr + Mprpm) — Ip(rur + R + 7o1)

— Mp(rusy + 7Ry +71D0)  (20)

dé_f = Ip(rur +2rrr) — Ir([Er]rer + 7p1) (21)
dé_f = [Epllprpr — Ip(rur +rrr +701) (22)

Me = Mp(roa + 2rrar) — Mp((Erlraa + o) (23)
Mo = [Ep]Mprpn — Mp(ruam +rrv + 7oum) (24)

where [EF] = EF/I

3.3. Reduction of the model. Combining equations (18) and (23)+(24)
we find the following restriction

2
g(pBITRI - TDI) (25)
Since in terms of ”particles” we have V = [ + M and since we would like
to have conservation of particles in terms of reserve transformed we find
by adding (21)-(24) and then applying (25)
dVv. _dI N dM
dt — dt = dt

(PBMTRM - 7"DM) =

2 2
= pB[TR[(I‘f‘ gM) — (I‘f‘ gM)T‘D[ (26)

For the reserve we find

dE dE dE 2
i d—tF + dtB pa— rri(ppr! + 3,OBMM) (27)

We have used here that rpy = %rRI which follows from particle conser-
vation.
The equations for the density of bound interior and membrane are

dPB

— = Erl(L = pp)re. = ppru. = pu.(1+ pp)re (28)



7

3.4. QSSA for model II. Further simplification towards core DEB is
possible under some assumptions and limits. If we —as we did for model
I- take the limit of rp. — oo while 7y /rpr = rua/rem = K', thus again
qualifying for the QSSA with respect to the density of bound membrane
or interior, and we take again [Er] — [E]/a, then the quasi stationary
solution is
i im LB _ _ _K'
A = 00 =) < K > (20
) [E]
75~ [ + ok’ (30)

so that pi; = ppy = P
We may now use that I — V and M — kV?/3 in the limit of M /I — 0.
Using this and the above limits we summarize

& = Da— (31)
4 = p* — (V= 2V )rp (32)

where pH = piyrp(V + 2KV/3).
Under the QSSA the catabolic rate of model IT coincides with the catabolic
rate in core DEB theory if the constants are chosen in the following way:

Ka=K

rr = [Eglkm/k = pE* = e (33)
3 .

k= §[Eg]v/rR/<a
The only notable difference between model IT and core DEB is a surface
dependent maintenance or decay rate, but if we choose rp = [py] we
end up with a mesoscopic model that is reasonably close to core DEB.
Note that the ratio between the surface and volume dependence of the
catabolic rate is the same as for the decay rate, this is a direct conse-
quence of the fact that the organism is isomorphic (both growing and
shrinking) and that only decay of particles contribute to maintenance. It
would be interesting to see whether or not model IT would make a good
or even better fit than core DEB when confronted directly with data, and
thus whether or not we should consider a slightly more elaborate model.

4. FUTURE WORK

We have constructed a simple and naive yet effective mesoscopic descrip-
tion that coincides at least by approximation with core DEB theory. We
now have a starting point to consider more specific questions like how
exactly are the assumptions made here related to the assumptions made
in DEB theory. How could these assumptions be lessened, or replaced by
introducing regulatory mechanisms that explain rather than assume why
there is homeostasis and why the membrane grows in the right pace with
the interior. Is it straightforward to model mesoscopically other parts
of DEB theory, like for instance ageing. Also would it be interesting to
see to what extent the ideas applied in ” A Markov Model for Kinesin”
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[5] can be applied to derive characteristic free energy differences of vari-
ous parts of an organism. But firstly it should be checked that the above
made considerations apply to multicellular organisms and non-isomorphs
as well.
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