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Chapter 1

Why bats loose their way above
meadows

It is widely known that bats cry at high frequencies and listen to the echo for orientation.
They observe the time lag between cry and echo, and the intensity and the frequency of the
echo. While crying, they stop listening by separating the earbones using muscles. Evidence
suggests that bats are able to detect the echo of a cry in the first period of silence after
the cry only. This poses constraints on orientation and cry features. We will study this
briefly for the greater horseshoe bat, which cries at 83 kH during a period of S1 = 0.07 s
and keeps its nose during a period of S2 = 0.07 s. (Many species of bat change frequency
during a cry, but horseshoe bats don’t.)

The bat flies at height h above a plane with speed v. We choose x, y - coordinates in
the plane such that the bat is (at height h) above the origin at time t = 0 and flies in the
y-direction (see Fig.1.1). It is known that sounds travel through air of a pressure of 101
kPa at 20◦C with a speed of c = 344 m/s. The time delay between cry and echo and the
intensity only depend on the distance, d, between bat and the object causing the echo.
Apart from the accuracy in the detection, these two signals contain basically the same
information. Let us study the time delay, called T , which will appear to put a constraint
of about 24 m on the horizon for the bat. The distance dt to the object changes with time
t, depending on the angle, α, between the direction of the object and the direction of the
flight. Suppose that the bat does not change direction. Application of the cosine rule in
triangle ABC in Fig.1.1 learns that

dt =
√
d2

0 + t2v2 − 2tvd0 cosα0 (1.1)

Assume that the bat cries in point B and hears the echo in point C. So the time needed
for the bat to travel from B to C equals the time needed for the sound to travel from B
to A and back to C. The time delay is then given by the implicit equation

T =
d0 + dT

c
(1.2)

So we find

1



2 CHAPTER 1. WHY BATS LOOSE THEIR WAY ABOVE MEADOWS

T =
2d0(c− v cosα0)

c2 − v2
(1.3)

This delay now has to obey T < S+ ≡ S1 + S2, which poses a horizon for the bat. It is
only able to detect an object if

d0 <
S+(c2 − v2)

2(c− v cosα)
(1.4)

If the bat flies at height h above the plane, then the distance to a point (x, y) on the plane
at time t = 0 is

d0(x, y, h) =
√
x2 + y2 + h2 (1.5)

The cosine of the angle between the direction of the point (x, y) and the direction of flight
is given by

cosα(x, y, h) =
y

d0(x, y, h)
(1.6)

The x, y - coordinates of the points observable for the bat are found from (1.4)-(1.6) to
obey

2c
√
x2 + y2 + h2 − 2vy < S+(c2 − v2) (1.7)

The boundary of this area obeys the equation

2c
√
x2 + y2 + h2 − 2vy = S+(c2 − v2) (1.8)

which is equivalent with the ellips equation

x2 + (1− v2/c2)(y − 1

2
vS+)2 =

1

4
S2

+(c2 − v2)− h2 (1.9)

In view of the shape of the ears, it is not likely that bats are able to detect sounds from
behind very well. So in fact the ’visible’ patch is only half an ellips. From the right-hand
side of (1.9) it immediately follows that a bat flying higher than

h =
1

2
S+

√
c2 − v2 (1.10)

is unable to observe the plane at all. For practical purposes, v is negligibly small in
comparison with c. In that case the border of the visible patch is a circle with radius√

1
4
S2

+(c2 − v2)− h2 and the greater horseshoe bat has to fly lower than some 24 m, in
order to observe the plane.

Because of the cry-listen sequences, observations come in discrete images, rather than
continuously changing ones. For effective orientation, it will be necessary that subsequent
images have substantial overlap, in order to recognize the same object in these images.
The front border is given by



3

Figure 1.1: A bat, flying above
a plane, can only observe objects
within a rather small circular patch
beneath it.

y =
1

2
vS+ +

√
1

4
S2

+c2 −
h2c2

c2 − v2
(1.11)

Greater horseshoe bats seem to react to objects at d = 8 – 10 m. If the object is in
the plane in the direction of flight, it is at y′ =

√
d2 − h2. For v � c, (1.11) gives a front

border of y =
√
c2S2

+/4− h2. The distance y−y′ is covered in a time of (y−y′)/v, in which
some (y − y′)/(vS+) snap shots are taken. At a height of 4 m and a speed of v = 20 km/h
= 5.55 m/s, this means that the bat is in principle able to observe the object during 2.8 s
in some 20 images, neglecting reaction time.

The time delay depends on both the distance d to the object and the relative speed
v cosα, see (1.3). (The relative speed is found by taking the derivative of (1.1) at time
t = 0, or by decomposing the speed vector). So the bat needs additional information,
which it obtains from the ratio between the frequencies of cry and echo, which depends,
if v � c, on relative speed only, as shown below. This ratio differs from 1 by the Doppler
effect which acts two times in fact: we are dealing with a moving source (the crying bat in
point B, Fig.1.1.) and a moving observer (the listening bat in point C). Writing fB, fA,
fC for the frequency in B, A and C respectively, we find

fA =
c

c− v cosα0

fB. (1.12)

fC =
c+ v cosαT

c
fA. (1.13)

So, the ratio of the frequencies is given by

fC
fB

=
c+ v cosαT
c− v cosα0

. (1.14)

If v � c this can be approximated by

fC
fB

= 1 +
2v

c
cosα0. (1.15)
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By using both the time delay T and the frequency ratio fC/fB, the bat is able to determine
the distance of objects and the angle between their direction and the direction of flight.
But this is not enough to determine the exact position of an object. A circle of points,
perpendicular to the direction of flight, cannot be distinguished. Additional information
is obtained making use of the phase shift of the echo between both ears. (The asymmetric
ears of barn owls enhance their ability to detect such a phase difference. Notice that
we, humans, can easily determine direction, but we have more problems with distance.)
The sensitivity of the ears is usually maximal at cry-frequency, while the cry-frequency is
optimized to detect direction and so phase shifts. The phase shift as a fraction, F, of the
period of the sound, f/c, from a source which is at an angle β with the axis through the
ears is given by

F =
f l

c
cos β (1.16)

where l is the distance between the ears. When the information of time delay, Doppler
effect and phase shift has been combined, only two points cannot be distinguished, which
lay symmetrically to the horizontal plane in which the bat flies. By turning its nose a bit,
the bat is able to determine the exact position of the object.

The product fl appears to be more or less constant for different species. For us,
with f = 7 kH (normal conversation level) and l = 0.12 m, fl = 0.84 kHm. The greater
horseshoe bat has f = 84 kH and l = 0.01 m, giving fl = 0.84 kHm, while the lesser
horseshoe bat has f = 112 kH and l = 0.0075 m, giving fl = 0.84 kHm again. If the
greater horseshoe bat approaches its prey rapidly, causing an increase in echo frequency
due to the Doppler effect, it lowers its voice to compensate.

Bibliography
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Chapter 2

The musselwatch

To monitor the concentration of a pollutant in waterways, it sometimes makes sense to
determine the concentration in mussels, Q(t), which have been exposed in such waterways,
rather than to determine the concentration in the water, c(t). The first argument is that
of bio-availability. Not all of the chemically determined pollutant in the water is actually
available to organisms, due to a variety of chemical forms in which the pollutant is present
(e.g. ligands). Therefore tissue concentrations provide information which is more relevant
to the problem of pollution. Another argument is that the concentration of pollutant
might have some sharp peeks, which are easy to miss in infrequent determinations of
concentrations in the water. Mussels, in some way, integrate the external concentration
in time. Therefore it should still be possible to observe a trace of such peeks in tissue
concentrations at infrequent sampling, if, at least, the mussels do not close their valves
during such peeks. Let us study this argument in more detail.

Suppose that the tissue concentration follows a simple one-compartment process, i.e.

Q′ =
Kc(t)−Q

τ
, given Q(0) (2.1)

where Q′ stands for the change of Q in time. For other symbols, see Table 2.1. So, if
we know Q(t) in sufficient detail, and if it is sufficiently smooth, we can reconstruct c(t)
through

c(t) =
Q(t) + τQ′(t)

K
(2.2)

For the present purpose, we need an explicit expression of Q(t) in terms of c(t), however,
because we want to study the effects of rapidly changing water concentrations. The solution
is found from (2.1) to be

Q(t) = Q(0)e−t/τ +
K

τ

∫ t

0
e−(t−s)/τc(s) ds (2.3)

If c(t) is actually constant, (2.3) reduces to

Q(t) = Q(0)e−t/τ + cK
(
1− e−t/τ

)
(2.4)

5



6 CHAPTER 2. THE MUSSELWATCH

Table 2.1: List for frequently used symbols

Symbols Dimension Meaning

t time time
τ time time constant of elimination
T time residence time of water in the lake
d time length of an interval, say a day
c weight/vol concentration in water
Q weight/vol concentration in tissue
K bio-accumulation factor

Now we will approximate the continuous function c(t) by a step function which changes
only at discrete, equidistant time points ti. That is, c(t) is constant over a time interval
(ti, ti + d), at value ci. The tissue concentration at the end of the interval is given by

Qi+1 = Q(ti + d) = rQi + (1− r)Kci (2.5)

with Qi = Q(ti) and r = e−d/τ . Now we assume that the values ci represent trials taken
independently from some probability density function. This is reasonable for the situation
in a river, where well-mixed water surrounding the mussel is completely replaced in an
interval of length d. The schedule (2.5) is known as a (first-order) stochastic difference
equation or an autoregression process, because the new value for Q is a weighted sum of
the old value and an independent random variable. Alternatively, it can be expressed in a
so-called moving average scheme:

Qi+1 = ri+1Q0 + (1− r)K
i∑

j=0

rjci−j (2.6)

The expected value for Qi+1 will be

EQi+1 = ri+1Q0 + (1− r)K Eci
i∑

j=0

rj (2.7)

Ultimately, i.e. for large i, we have

EQi = (1− r)K Eci
∑
j

rj = K Eci (2.8)

So, the ultimate mean tissue concentration is just the mean external concentration times
the bio-accumulation factor K. This result corresponds with the deterministic situation if
c is constant. Then Q(∞) = Kc, as can be seen directly from (2.4).

The variance of the tissue concentrations is found from (2.6) to be

varQi+1 = (1− r)2K2var ci
i∑

j=0

r2j (2.9)
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Ultimately we have
varQi = var ciK

2(1− r)/(1 + r). (2.10)

So, for the ratio of the coefficients of variation, CV, we have

CV ci
CVQi

=

√
1 + r

1− r
(2.11)

This ratio is larger than 1, which means that CVQi < CV ci. The quotient is increasing
in r, so when r is large (i.e. τ is large compared with d), the behaviour of the tissue
concentration will be much more smooth than the behaviour of the concentration in the
water.

The subsequent tissue concentrations are correlated, as opposed to the concentrations
in the water. This is expressed by the so-called autocovariance function cov (Qi+h, Qi), or
the autocorrelation function corr (Qi+h, Qi) (both considered as functions in h), given by

cov (Qi+h, Qi) = r|h|varQi (2.12)

and

corr (Qi+h, Qi) =
cov (Qi+h, Qi)

varQi

= r|h| (2.13)

Show this by writing Qi+h in terms of Qi using (2.5) several times. We can also study the
interdependence of Qi+h and ci by looking at the (cross-)correlation function corr(Qi+h, ci)
which in this case can easily be derived to be

corr (Qi+h, ci) ≡
cov (Qi+h, ci)√

varQi var ci
=
√

1− r2 rh−1 forh > 0 (2.14)

The crosscorrelation function in Fig.2.1 shows how the concentration in tissue lags behind
concentration fluctuations in the water. The value r = 0.8 has been chosen in (2.13) and
(2.14). This smoothing also results in a gradually decreasing autocorrelation function of
Q.

Usually, the behaviour of water concentrations shows more ’memory’. Suppose, we have a
lake of constant volume V , with an inflow and an outflow of water at rate v per unit of time.
Writing T for V/v, which is known as the residence time, we have for the concentration c
in the lake and f in the inflowing water, assuming a one-compartment process:

c′ = (f(t)− c) /T given c(0) (2.15)

The solution, in analogy with (2.3), is:

c(t) = c(0)e−t/T +
1

T

∫ t

0
e−(t−s)/Tf(s) ds (2.16)

We will approximate f(t) the same way we did c(t). That is, f is constant over an interval
(ti, ti+d) at value fi. Then we have

ci+1 = sci + (1− s)fi with s = e−d/T (2.17)
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Figure 2.1: Left: A random sample of the time path of the concentration fluctuations in water
and tissue, if the first show no memory. Right: The autocorrelation functions of concentrations
in water, 3, and tissue, 2 and their cross correlation function, ◦.

This is again an auto-regression scheme if the fi’s are independent and identically dis-
tributed. Ultimately we have, analogously with (2.8) and (2.10), Eci = Efi and var ci =
var fi(1− s)/(1 + s). So the (ultimate) mean and variance of ci do not depend on i. The
main difference with the river situation is that subsequent values for ci are now correlated.
The autocovariance function (see (2.12)) is given by

cov (ci+h, ci) = s|h|var ci (2.18)

We can express the variance of Qi in terms of that for ci using (2.6):

varQi+1 = (1− r)2K2var (
∑
j

rjci−j)

= (1− r)2K2
∑
j,k

cov (rjci−j, r
kci−k) for j, k = 0, 1, . . .

= (1− r)2K2var ci
∑
j,k

rj+ks|j−k|

= (1− r)2K2var ci
1 + rs

(1− r2)(1− rs)

= K2var ci
1− r
1 + r

1 + rs

1− rs
(2.19)

Now, we arrive at the following ratio for the coefficients of variation of the water and the
tissue concentrations:

CV ci
CVQi

=

√
1 + r

1− r
1− rs
1 + rs

(2.20)



9

which reduces, as expected, to the river situation (2.11) for s = 0. The ratio is larger
than 1. It is an increasing function in r, but decreasing in s. So we can conclude that the
tissue concentrations will show less variation than the external concentrations indeed, and
that the reduction can be significant if the process governing the external concentrations
has little memory and if the tissue concentrations are following the external concentrations
slowly.

The time behaviour of the tissue concentration and its relation with the water concen-
tration is further illustrated by the autocovariance and the cross-covariance functions. To
obtain these functions, we first write (2.17) into the moving-average scheme

ci+1 = (1− s)
∞∑
k=0

skfi−k (2.21)

which we substitute into (2.6), obtaining for large i

Qi+1 = K
(1− s)(1− r)

s− r

∞∑
k=0

(sk − rk)fi−k (2.22)

Straightforward expansion gives

cov (Qi, Qi−h) =

=
1− s
1 + s

1− r
1 + r

K2varfi
1− rs

(1− r2)s|h|+1 − (1− s2)r|h|+1

s− r

= varQi
(1− r2)s|h|+1 − (1− s2)r|h|+1

(1 + rs)(s− r)
(2.23)

and, for h = 0, 1, 2, . . ., we have

cov (Qi, ci−h−1) =

= varfiK(1− s)2 1− r
s− r

(
sh+1

1− s2
− rh+1

1− rs

)

=
√

varQi var ci

√√√√ 1− r2

(s− r)2

1− rs
1 + rs

(
sh+1 − 1− s2

1− rs
rh+1

)
(2.24)

The auto- and cross-covariance functions contain information about the interdependence
of the variables. We started to study the case of independent concentrations in the water,
which results in an autocovariance function, which starts at var ci for time lag h = 0, but
drops to zero for h = 1, 2, . . .. The cross-covariance function in Fig.2.1 shows how the
concentration in tissue lags behind concentration fluctuations in the water. The values
s = 0 and r = 0.8 has been chosen in (2.23), (2.24) and (2.18). This smoothing also results
in a gradually decreasing autocovariance function. When the concentration in the water has
some memory, like that modelled in (2.17), the autocovariance function of concentrations
in the water drops gradually, as expected. See Fig.2.2, where s has been chosen 0.6. The
cross-covariance function now shows first an increase. However, the way the tissue follows
the concentrations in the water, was exactly the same as in Fig.2.1. It is therefore very
difficult to interprete covariance functions without a model for the way the variables depend
on each other.
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Figure 2.2: Left: A random sample of the time path of the concentration fluctuations in water
and tissue, if the first shows memory according to the moving average process. The autocovariance
functions of concentrations in water, 3, and tissue, 2 and their cross-covariance function, ◦.
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Chapter 3

Individuals as discrete units with a
juvenile stage

In a constant environment, any population eventually grows exponentially. If N(t) denotes
the number of individuals at time t, we have N(t) = N(0) exp{rt}, where r is called the
population growth rate. It is found from the characteristic equation

1 =
∫ ∞
0

F (a)R(a)e−ra da (3.1)

where F (a) denotes the survival probability at age a and R(a) the reproduction rate at
age a. Suppose that an individual survives up to a high age, so that F (a) = 1, and that
it is able to have offspring at a constant rate R, after age J , so R(a) = R(a > J). Then
(3.1) reduces to

e−rJ = r/R (3.2)

This equation for r must be solved numerically. For J = 0, we have that r = R. For
increasing J , r is falling extremely rapid (see Fig.3.1). This means that neonates giving
birth to new neonates would dominate population growth. This unrealistic property is
an intrinsic feature of all models allowing this behaviour, like all unstructured models for
population dynamics (e.g. Lotka-Volterra equations).

The reproduction rate is so far a continuous function of age. Obviously, this is unre-
alistic, because individuals are discrete units. It would be more appropriate to gradually
fill a buffer with energy assigned to reproduction and to convert it to a new individ-
ual as soon as enough energy is gathered. In that case, the reproduction rate becomes
R(a) = (a = J + i/R)/da, for i = 1, 2, . . .. For an adult, the mean reproduction rate is
again R young per time. Now, (3.1) reduces for F (a) = 1 to

1 =
∞∑
i=1

e−r(J+i/R) = e−r/R−rJ
(
1− e−r/R

)−1
(3.3)

In analogy with (3.2), we can rewrite (3.3) to

e−rJ = er/R − 1 (3.4)

11



12 CHAPTER 3. INDIVIDUALS AS DISCRETE UNITS WITH A JUVENILE STAGE

Figure 3.1: The population growth rate
depends heavily on the length of the juve-
nile period, particularly when individuals
are not modelled as discrete units (upper
curve).

If we compare (3.2) with (3.4), we can observe the effect of individuals being discrete units
rather than continuous flows of biomass. For J = 0, (3.4) gives r = R ln 2, which is a
fraction of some 0.7 of the value we got from (3.2). For increasing juvenile periods, the
effect becomes less important (see Fig.3.1).
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Chapter 4

Stable age-distribution

Suppose that in a constant environment, the survival probability of a female individual
with age a, is given by F (a), and that its reproduction rate is R(a). Let n(a, t) da denote
the number of females at time t having an age somewhere in the interval {a, a + da}.
Then the total number of individuals, N(t), is given by N(t) =

∫∞
0 n(a, t) da. How will

the population develop if we specify the composition of a population at time t = 0, say
by n(a, 0) = n0(a)? To evaluate the population, we need to know the birth rate at time
t, B(t). If the reproduction rate was a constant R, we could easily state B(t) = N(t)R.
However, because reproduction rate is age dependent, we must calculate birth rates in
every ’age class’ and ’add them up’, or in mathematical terms

B(t) =
∫ ∞
0

n(a, t)R(a) da (4.1)

So if we know n(a, t) we can calculate B(t). On the other hand we can see that n(a, t)
is determined by B(t − a) in the following way: individuals having age a at time t are
the individuals which were born at time t − a and have survived up to age a. Again in
mathematical terms

n(a, t) = B(t− a)F (a) (4.2)

Notice that the right-hand side of this expression contains in fact a probabilistic term,
F (a). On the population level it can be interpreted as ’the fraction surviving age a’.

Substitution of (4.2) in (4.1) gives the following integral equation for B(t)

B(t) =
∫ ∞
0

B(t− a)F (a)R(a) da (4.3)

In this equation our assumed knowledge of the population at time t = 0 has not yet
been used. This can be achieved by making a census in time in (4.3). If a > t we can
rewrite (4.2) as B(t− a) = n0(a− t)/F (a− t). Substitution in (4.3) results in

B(t) =
∫ t

0
B(t− a)F (a)R(a) da+

∫ ∞
t

n0(a− t)
F (a− t)

F (a)R(a) da (4.4)

13



14 CHAPTER 4. STABLE AGE-DISTRIBUTION

This equation is known as the renewal equation. It can be read as follows: births at
time t originate from individuals born since t = 0 and from individuals already present in
the population at t = 0. The latter term is usually called G(t).

We assume there is some value ω such that F (a) = 0 and R(a) = 0 for a > ω (ω can be
interpreted as the maximal age). Then G(t) = 0 for t > ω. Now suppose that the solution
of (4.4) is of the form B(t) = C ert, for some value for r, then (4.4) reduces (for t > ω) to

Cert =
∫ ω

0
Cer(t−a)F (a)R(a) da

Dividing by C ert we get the following equation for r

1 =
∫ ω

0
e−raR(a)F (a) da (4.5)

This equation is known as the characteristic equation. It is possible to show that, under
some smoothness restrictions on the reproduction function R(a), this equation has exactly
one real root r1. The other roots are complex and have a real part smaller than |r1|. The
general solution appears to be a linear combination

∑
iCie

rit. For large values of t the
exponential er1t will be dominant, so the the asymptotic solution will be C1 e

r1t. (The
smoothness restrictions on R(a) are violated if for instance reproduction is only possible at
certain particular ages. The information about the composition of the initial population
then never gets lost.)

From (4.2) it follows that n(a, t) = C e−r1aer1tF (a) and thatN(t) = C er1t
∫ ω
0 e
−r1aF (a) da.

This implies that r1 represents the (eventual) population growth rate and that not only
the total number of individuals is eventually growing exponentially, but also the number
in each age class. Now we define the so-called stable age distribution f(a) as

f(a) ≡ n(a, t)

N(t)
=

e−r1aF (a)∫ ω
0 e
−r1sF (s) ds

(4.6)

It can be conceived as the probability density of the age of a randomly selected individual
in a really large population, exponentially growing in a constant environment.

As an example, consider a micro-organism growing exponentially from volume Wb to
volume 2Wb in interval ω, after which it divides into two parts of volume Wb again. Here
W (a) = Wb2

a/ω for 0 < a < ω. If there are no actual deaths, we can fictively put
F (a) = (a < ω) and R(a) da = 2(a = ω). From (4.5) we obtain r = (ln 2)/ω. In
principle, a population of such micro-organisms has no stable age distribution because
of the mentioned phenomenon that the initial age distribution continues to exercise its
influence. In practice however, there will be enough scatter among the division intervals of
the daughter cells to destroy synchronicity. It seems safe therefore to neglect this problem
and obtain from (4.6) the semi-stable age distribution

f(a) da = 21−a/ω ln 2

ω
da (4.7)

Alternatively, we can recast this into the semi-stable size distribution by substituting
a = ω ln(W/Wb)/ ln 2 and da = ω(W ln 2)−1 dW into (4.7). We obtain f(W ) dW =
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Figure 4.1: The stable age (left) and size (right) distribution of exponentially growing micro-
organisms that divide in two parts.

2WbW
−2 dW . See Fig.4.1. Thus we see that the size distribution is independent from

the population growth rate. In practice it will be dependent nonetheless, because at high
population growth rates cells start a new DNA duplication cycle, before the former one is
fully completed. This results in increasing cell sizes at high population growth rates.

The notion of stable age distributions is important in the theory of population dynamics.
For practical purposes it is essential to realize that they eventually occur only in populations
living in constant environments. This condition will not occur for a long period, outdoors.
Apart from seasonal changes in the environment, an exponentially growing population will
soon exhaust its resources, depending on the population growth rate.

Bibliography

Frauenthal, J. C. (1980). Analysis of age-structured models. In Hallam, T. G. and Levin, S. A., editors,
Mathematical ecology., pages 117–147. Springer-Verlag, Berlin.

Level key

medium

Method keys

state!steady, distribution!frequency, definition!implicit, function!exponential, integral!convolution.

Area keys

population dynamics.



16 CHAPTER 4. STABLE AGE-DISTRIBUTION

Info

Filename ex004; Date 1990/09/17; Author: Bas Kooijman



Chapter 5

The Ames test

The Ames test is a bioassay for testing the mutagenic potential of chemicals on the basis of
the frequency of backward mutations in histidine auxotrophic mutants of the pathogenic
bacterium Salmonella typhimurium (i.e. these bacteria have been mutated such that they
are no longer able to synthesize the amino acid histidine themselves, so they need it in
the medium). At the start of the experiment, a certain amount of (primairy) histidine
auxotrophs are inoculated on an agar plate containing a rich medium with, however, a
little bit of histidine and the chemical to be tested. (Usually, there are several plates with
different concentrations of chemical.) The incolated bacteria grow and divide, until the
histidine is exhausted. So each produces a micro-colony, usually consisting of some 100
bacteria. If one or several bacteria have been permanently converted to the prototrophic
state, however, its colony will continue to grow and will become visible with the naked eye.
Its is then called a revertant colony. The growing state seems to be a condition for the
expression of the backward mutation. So, no visible mutations occur after colony growth
ceased due to histidine limitation. For mutagenic chemicals, the number of revertant
colonies generally increases linearly with its concentration, at a rate that is taken to be
proportional to its mutagenic potential. Let us study the quatitative aspect.

To derive an expression for the number of revertant colonies, we first need the fixation
probability pf (a), which is the probability that a prototrophic cell of age a at time zero
will grow into a revertant colony after the moment the histidine is exhausted. Generally,
this fixation probability is less than 1 because prototrophic cells may become extinct due
to conversion to multiple auxotrophy. This extinction probability is easily found from
the probability generating function, G, of the number of prototrophic cells arising from
a prototrophic cell after division, i.e. G(s) = (pd + qds)

2, where qd ≡ 1 − pd and pd
is the conversion probability from a prototrophic cell into a multiple auxotrophic one in
a period d, i.e. the division interval. The extinction probability qf (d) ≡ 1 − pf (d), of
prototrophic cells starting with a prototrophic one of age d is given by qf (d) = G (qf (d)).
If the probability rate for conversion of a multiple auxotrophy to a primairy auxotrophy
or prototrophy is neglibibly small, and if the conversion probability rates from primary
auxotrophy and prototrophy to multiple auxotrophy is equal and constant at value β, say,
we have pd = 1 − e−βd. This leads to qf (d) = min(p2

d/q
2
d, 1). For an arbitrary initial age

a, we should account for the probability of conversion to multiple auxotrophy before the

17
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moment of first division, so

qf (a) = pd−a + qd−aqf (d) = min(pa + qap
2
d/q

2
d, 1) or

pf (a) = 1− qf (a) = eβa(2− eβd)+ (5.1)

where the + sign indicates the maximum of zero and the term within the brackets.
Suppose that we inoculate with I cells (usually some 108) and that the amount of

histidine is just enough for the formation of H cells on the plate. Suppose further that the
division interval d is constant. The number N of cells on the plate then grows exponentially
in time, i.e. N(t) = I 2t/d, as long as the histidine is not limiting. This occurs at time T ,
found from N(T ) = I +H, giving T = d(ln 2)−1 ln(1 +H/I). In writing an expression for
the probability on a revertant colony, we have to realize that the inoculated cells as well
as the cells present at T , have not been exposed to the chemical during their full life cycle.
To deal with this fact, we partition T as T ≡ kd+ c, where k ∈ {0, 1, 2, · · ·} and c ∈ (0, d).
Suppose that each inoculated cell has a probability pA of being primary auxotrophic and
pP of being prototrophic. If the probability rate of conversion from primary auxotrophy to
prototrophy is small and constant at value α, say, the probability, pr(a), that an inoculated
cell of age a will grow into a revertant colony is given by

pr(a) = pPpf (a) + pAα
∫ d−a

0
e−tβpf (a+ t) dt

+ pAα
k−1∑
i=1

2i
∫ d+id−a

id−a
e−tβpf (t− id+ a) dt

+ pAα2k
∫ dk+c

d+dk−a
e−tβpf (t+ a− kd) dt

Suppose that we start with the stable age distribution for the inoculated cells, i.e.
f(a) da = 21−a/dd−1 ln 2 da. The probability that a randomly chosen cell will then grow
into a revertant colony is after some calculations found to be

pr =
∫ d

0
pr(a)f(a) da

=
ln 2

(
2− eβd

)2

(ln 2− βd)+

(
pP + pA

αd

ln 2− βd

[(
1 +

H

I

)1−βd/ ln 2

− 1

])
(5.2)

which reduces for negligibly small β to

pr = pP + pAαdH/(I ln 2) (5.3)

The number of revertant colonies will be binomially distributed, but in view of the small
number of revertant colonies with respect to the number of inoculated cells, it is safe to
use the approximation with the Poisson distribution with parameter Ipr. If each molecule
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of the chemical has an equal (and small) probability of causing a mutation, a will be
proportional to the concentration. One can use likelihood based linear Poisson regression,
to obtain the propartionality constant from the number of revertant colonies at several
concentrations of test compound.

In conclusion, (5.3) confirms the empirical observation that the mean number of rever-
tant colonies depends linearly on the concentration of chemical. However, it also reveals
that a number of other factors contribute as well, like the age distribution and the amount
of inoculated cells, the amount of histidine supplied and the division interval (and so the
composition of the medium). In practice these problems are ”solved” by standardization.
Additional complications arise if the chemical also affects growth (so prolonging the pe-
riod of exposure), particularly if the agar contains slightly mutagenic compounds (due to
autoclavation, and referred to as ”background” mutations).
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Chapter 6

Extinction in constant environments

The larvacean Oikopleura dioica is one of the major feeders on the nannoplankton in North
Sea. Contrary to its congeners, it is not hermaphroditic, but does sport the heroic way of
reproduction by dying upon reproduction. So, the lifetime is in fact the juvenile period
J , say. (Quite a few species exhibit this trait, like most cephalopods for instance.) As
long as environmental conditions do not change, it seems safe to assume that the number
of offspring of female i, Xi, can be conceived as a random trial from some probability
distribution, P{Xi = x}, x = 0, 1, · · · , say, which is identical for all i’s. Here we also
assume that the age at reproduction does not vary, so the individuals stay synchronized.
The total number of individuals in the population in the t-th generation is then given by

Nt =
Nt−1∑
i=1

Xi

Such a process is called a branching process. The mean, the variance of the number of
individuals in the population and the extinction probability in a patch of water can be
evaluated by relatively simple means using the probability generating function Gt(s) ≡∑∞
i=0 P{Nt = i}si, starting with 1 individual (so P{N0 = 1} = 1, giving G0(s) = s).

We first derive an expression for the probability generating function for number of
individuals in the t-th generation.

Gt(s) =
∞∑
i=0

P{Nt = i}si

=
∞∑
i=0

∞∑
j=0

P{Nt = i|Nt−1 = j}P{Nt−1 = j}si

=
∞∑
i=0

∞∑
j=0

P{X1 +X2 + · · ·+Xj = i}P{Nt−1 = j}si

=
∞∑
j=0

P{Nt−1 = j}
∞∑
i=0

P{X1 +X2 + · · ·+Xj = i}si

=
∞∑
j=0

P{Nt−1 = j}[G1(s)]
j
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= Gt−1 (G1(s)) = G1 (Gt−1(s)) (6.1)

The mean of the number of individuals in the t-th generation, mt, is found from mt =
d
ds
Gt(1) ≡ G′t(1). We find

mt = G′t(1) = G′1(1)G′t−1(1) = [G′1(1)]t = mt
1 (6.2)

This expression shows that it is possible to connect the mean numbers m0
1,m

1
1,m

2
1, . . . for

time 0, J, 2J, . . . with an exponential function

m(t) = exp{tJ−1 lnm1}.

The population growth rate is thus J−1 lnm1. The mean approaches 0 for m1 < 1, i.e.
when a female, on average, no longer replaces herself.

The variance of the number of individuals in the t-th generation, σ2
t , is found from

σ2
t = G′′t (1) +G′t(1)− (G′t(1))2. We find from (6.1) that

G′′t (1) = G′′1(1)[G′t−1(1)]2 +G′1(1)G′′t−1(1)

= (σ2
1 +m2

1m1)m
2t−2
1 +m1G

′′
t−1(1)

= (σ2
1 +m2

1 −m1)
(
m2t−2

1 +m2t−3
1 + ·+mt−1

1

)
Substitution shows that

σ2
t = σ2

1m
−1
1 (m1 − 1)−1mt

1(m
t
1 − 1) for m1 > 1 (6.3)

σ2
t = tσ2

1 for m1 = 1 (6.4)

The coefficient of variation, CVt ≡ σt/mt, appears to become constant after some genera-
tions, when mt

1 � 1. From (6.2) and (6.3), we have

CVt = σ1/
√
m1(m1 − 1) (6.5)

This coefficient becomes 0 if m1 = 1, however. The reason for this lies in extinction
becoming certain in the long run as long as P{Xi = 0} 6= 0. Under the latter condition,
the probability of extinction can be positive even for m1 > 1. Let qt ≡ P{Nt = 0} = Gt(0)
be the probability of extinction at or prior to the t-th generation. From (6.1), we must
have that

Qt = Gt(0) = G1 (Gt−1(0)) = G1 (Qt−1)

So, eventually, we must have an extinction probability 0 < Q∞ < 1, such that

Q∞ = G1(Q∞) (6.6)

If more positive roots of (6.6) exists, we must have the smallest one. See Fig.6.1. If
P{Xi = 0 ∨ Xi = 1} < 1, G1(s) must be a convex function in s as G′′1(s) > 0. We also
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Figure 6.1: Left:The probability generating function of the Poisson distribution and its relation
with the extinction probability. m = 1, 2, 3, 4, 5. Right: The extinction probability in populations
with a Poisson distributed number of offspring.

have that G1(1) = 1, so there exists at most one positive root of (6.6) less than 1 and it
exists only if G′1(1) > 1, i.e. when m1 > 1. This implies the certain ultimate extinction for
m1 = 1.

As an example, we can take a Poisson distribution with parameter m, say, for the
number of (female) offspring per female. The probability generating function is then given
by G(s) = exp{m(s − 1)}. The ultimate extinction probability Q∞, is according to (6.6)
found from Q∞ = exp{m(Q∞ − 1)}. Fig.6.1 gives the solution as a function of the mean
number of offspring, m. We have to realize that the expected time of extinction, given that
it occurs, will decrease for increasing m.

This exposition shows that it is possible to evaluate some biologically relevant facts for
the behaviour of branching processes, without specifying the complete distribution for the
number of offspring from a female. The formulation in terms of branching processes can
be generalized in several respects, but from a biological point of view it is too rigid to be
really useful. It is for instance possible to let the mother survive after giving birth, but
then it seems not realistic that her next brood should coincide with that of her offspring.
Introduction of an age-structure seriously complicates the formulation. Even more serious
problems in the formulation arise, when food supply becomes limiting due high numbers
of individuals.

Further reading

Example 3 for the same equation as the one for extinction probability in populations with
Poisson distributed number of offspring, but with a totally different interpretation.

Example 5 for application in populations of dividing organisms
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Chapter 7

Some quantities really stink

For people involved in applications, mathematicians are notorious for their passion for
anomalies, like infinite variances. Much to the enjoyment of mathematicians and to the an-
noyance of applicants, they do occur in ”real life”, every now and then. Mandelbrot [Man-
delbrot, 1974] explained the long-known odd behaviour of this number [Luria and Delbrück,
1943] by showing that for rather general assumptions for the growth and mutation process,
the number of rare mutants in an old colony of bacteria follows a stable distribution, which
has infinite (higher) moments depending on the so-called stability exponent.

The derivation makes use of a defining property of stable distributions: the sum of two
independent identically distributed random variables X1 and X2 can be scaled such that
it follows the same distribution for properly chosen values for the location parameter, L,
and scale parameter, S. So, X1, X2, as well as S(2) (X1 +X2 − L(2)) all follow the same
distribution. The normal distribution is a well known for this property, where S(2) = 1/

√
2;

It is the only stable distribution having a finite variance. Generally, one has S(2) = 1/ a
√

2,
where a is known as the stability exponent, satisfying 0 < a < 2. For a < 2, the X’s have
infinite variance and for a < 1, the X’s also have an infinite mean.

Suppose that a we observe a bacterial colony, growing from one inoculated non-mutant
cell. The mutation probability rate is assumed small, constant and equal for each cell.
We choose the unit of time such that the division interval of the initial cell equals t∗ =
ln 2 and the origin such that the first cell divides at t = 0. Suppose that the number
of mutants, M(t), at time t grows exponentially with population growth rate r > 1,
such that M(t) exp{−rt} tends to limit F (x) one can call the asymptotic distribution
of M(t). The number of mutants resulting from both daughter cells, M1(t) and M2(t)
respectively, are independent, and L1 = M1(t) exp{−rt} and L2 = M2(t) exp{−rt} both
tend to the distribution F (x). Assuming that the probability that the inoculated cell
becomes a mutant is negligibly small, the number of mutants in the whole colony is given
by M(t) = M1(t) + M2(t) in a period t + t∗ after inoculation. So the distribution of
M(t) exp{−r(t+ t∗)} = (L1 +L2) exp{−rt∗} also tends to F (x). Therefore F (x) is a stable
distribution, with a stability exponent found from a

√
2 = exp{−rt∗} to be a = 1/r.

25



26 CHAPTER 7. SOME QUANTITIES REALLY STINK

Bibliography

Luria, S. E. and Delbrück, M. (1943). Mutations of bacteria from virus sensitivity to virus resistance.
Genetics, 28:491–511.

Mandelbrot, B. (1974). A population birth-and-mutation process, i: Explicit distributions for the number
of mutants in an old culture of bacteria. J. Appl. Prob., 11:437–444.

Level key

medium

Method keys

variable!random, variance, distribution!normal, function!exponential.

Area keys

population dynamics.

Info

Filename: ex007; Date 1989/07/04; Author: Bas Kooijman



Chapter 8

How to prepare media from salts

The composition of liquid growth media is frequently given in its ion composition in liter-
ature. The preparation of such media from salts diluted in aqua dest leads to the practical
problem of how to combine available salts in a way best approximating the given compo-
sition. Let us call the sought grams of salt S ≡ (s1, · · · , sk)T and the known molars of ion
U ≡ (u1, · · · , ur)T . Elementary chemistry allows us to compose a matrix M, such that a
typical element mij stands for the molar contribution of 1 gram of salt j to ion i. If we
want to prepare a litre of medium, the problem is thus to find a useful S, given M and U.
We can only hope for a unique solution if k ≤ r. Let us assume this to be the case.

Let us first try to minimize the sum of the absolute errors. So, we are looking for S,
such that

f ≡
r∑
i=1

(ui −
k∑
j=1

mijsj)
2 (8.1)

is minimal for all possible choices for S. In matrix notation we have S|f ≡ (U −
MS)T (U−MS) is minimal. To find such a S, we have to solve d

dS
f = 0. In elements we

have

df

dsl
= −2

r∑
i=1

ui − k∑
j=1

mijsj

mil = 0 for l = 1, ·, k. (8.2)

In matrix notation this becomes

d

dS
f(Ŝ) = −2MT (U−MŜ) = 0 or MTU = MTMŜ.

In terms of the latter notation, the solution is easily written down, if it exists:

Ŝ = (MTM)−1MTU. (8.3)

So, we have to multiply the column vector U to the left by the matrix (MTM)−1MT . This
matrix is known as the (left) generalized Moore inverse of the matrix M. It is an inverse,
because multiplication by its original results in the identity matrix, (MTM)−1MTM. It is
generalized because originally, the inverse matrix is only defined for square matrices. It is a
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particular generalized inverse, because more ways exist to define an inverse matrix, namely
the right generalized inverse. The left and the right inverse are identical for a symmetrical
(and thus square) matrix only, if they exist.

Usually, the ions differ widely in abundance. From a biological point of view, the way
they play a role in supporting life can be widely different. Therefore it is questionable
wether the loss function f makes sense on physical grounds. A lot more elegant is to
minimize the sum of relative errors rather than the absolute ones. The loss function now
takes the form

f =
r∑
j=1

((
uj −

k∑
i=1

mjisi

)
/uj

)2

=
r∑
j=1

(
1−

k∑
i=1

mjisi/uj

)2

(8.4)

In matrix notation we have

Ŝ|f = (1−NŜ)T (1−NŜ),

where N ≡ [diag(U)]−1M. In elements, we have to solve

df

dsl
= −2

r∑
j=1

(1−
k∑
i=1

njlsi)njl = 0 for l = 1, ·, k (8.5)

The solution, if it exists, is of course

Ŝ = (NTN)−1NT1. (8.6)

Although this choice for S will be satisfying in most practical cases, it is possible that
one or more elements of Ŝ are negative. Since it is far from easy to take a certain salt out
of a solution, we might want to have non- negative solutions only. This has to be obtained
by changing the salts to be use for the preparation of the medium.

As an example, consider the preparation of artificial seawater, as far as the main ions
are concerned, from a set of salts. Table 8.1 gives the relevant data. An ”exact” solution
is not possible, because the given combination of ions is not electrically neutral. The
values has been axtracted from ”the handbook”, ignoring the many rare ions. We can
conclude that, when both magnesiumchloride and magnesiumsulfate are available, the sum
of relative errors can be made quite small. The option with magnesiumsulfate only, has to
be preferred above that with magnesiumchloride only. In practice we should bother about
how to prevent gyps to precipitate, in this case.
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Table 8.1: The preparation of artificial seawater. The i, j-th element of the matrix N is obtained
by dividing the i, j-th element of the main table given below, by the molar concentration of ion
i of seawater (second column) and the molar weight of salt j (second row). The last three rows
consist of the best choice for salts using one or both magnesium salts in g/l. The first component
indicates the sum of relative errors.

NaCl KCl MgCl2 MgSO4 CaCl2 NaBr SrCl2
.6H2O .7H2O .H2O

Mol. weight 94 74 203 246 129 103 159
mM

Cl− 536 1 1 2 2 2
Na+ 456 1 1
Mg2+ 56 1 1
SO2−

4 28 1
Ca2+ 10 1
K+ 9.7 1
Br− 0.813 1
Sr2+ 0.092 1

5.03E-5 42.7 0.718 5.67 6.89 1.29 0.0837 0.0146
2.05E-1 44.8 0.719 0 8.27 1.29 0.0837 0.0146
1.01E 0 40.4 0.717 11.22 0 1.29 0.0837 0.0146
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Chapter 9

Roots at war

Optimizing crops of cereals has been and will be of vital importance in cultural develop-
ment. In principle it is possible to obtain some 160 seeds from one seed of classical cereals
like barley or rye in a year. Such high yielding factors are not met in practice, however.
At present, our highly priced modern technology is able to reach a value of some 10 till
20. In the 18-th century, it was 7 à 8. Extrapolating backwards, it is generally assumed
that at the birth of european agriculture, it has been some 3 à 4. Great surprise when
Reynolds (1979) obtained yield factors of 60 till 80, with a mean well above 30 during
some 15 years, in the Butcher-Hill Ancient Farm Research Project. This project aims to
mimic the old Babylonian technique as close as possible (including the use of old races,
obtained from eastern Turkey). Looking for explanations of this remarkable result, it has
been argued that the Babylonians planted the seeds in a honeycomb pattern, while later
technologies use random patterns (obtained by throwing handfuls wide from the lab). In
the honeycomb pattern, with an appropriate seed to seed distance, competition between
plants would be significantly reduced as compared with random patterns. Let us study
this explanation more closely, using the notion of Dirichlett cells.

The Dirichlett cell belonging to a particular plant is defined as the set of sites nearest
to that plant with respect to the other plants, Fig.9.1. Dirichlett cells can be considered as
the plane analogue of intervals between points on a time axis. In a honeycomb pattern with
mean plant density m per unit of surface area, all Dirichlett cells are identically honeycomb
shaped with a surface area of 1/m. The 6 nearest plants to a typical plant all are at a

distance
√

2 /
√

3m. Initially, i.e. just after sowing, there are no roots. After some time
they will start to grow and approximately occupy a circle with radius r. Suppose that the

roots of all plants grow equally fast. As long as r < 1/
√

2
√

3m, the roots do not interfere.
The fraction of unused land is then 1 − πr2/m. If the roots continue to grow, they will
make contact with that of neighbouring plants. Suppose that they will cease growing at
the places of contact, but continue to grow, where no neighbours are felt. We can define a
dimensionless index for competition as one minus the ratio of the actual surface area the
roots of a plant occupy and the potential one, when no neighbours where present. The
potentially occupied surface area is taken to be πr2. Initially, the competition index is

0. If the roots travel further than a distance
√

2 / 33/2m from the plant, all land will be
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Figure 9.1: Dirichlett cells of a honeycomb and a random pattern.

Figure 9.2: Competition indices and fraction of unused land for honeycomb (green) and random
(red) patterns as function of the size of the roots relative to the sowing density.

occupied and the competition index is 1 − (mπr2)−1. If 1/
√

2
√

3m < r <
√

2 / 33/2m,

straightforeward geometry learns that the competition index is {arctan c− c/(1 + c2)}6/π,

with c =
√
r2m2

√
3− 1, Fig.9.2. The fraction of unused land becomes 1− c

√
3− r2m(π−

6 arctan c). Suppose that the seed density has been chosen such that the roots of a fully
grown (lonely) plant occupy an area of just 1/m, i.e. the surface area available for one
plant. So, r = 1/

√
πm. In a honeycomb pattern, the competition index then 0.037, with

the same fraction of land still unoccupied.

Now let us consider random patterns. We idealize the sowing process, such that it is
reasonable to assume that the number of seeds falling into a plot of unit size follows a
Poisson distribution with parameter m. Now no two Dirichlett cells have the same shape
and size. It is extremely difficult, indeed, to tell more of the surface area of Dirichlett cells
in random patterns than their mean, which is obviously 1/m, and their variance, which is a
cumbersome expression (Matern, 1960). Their shape, which is determined by the position



BIBLIOGRAPHY 33

of neighbouring plants also varies considerably. The number of neighbouring plants, i.e.
plants having adjacent Dirichlett cells, can vary between 3 and a lot. So we must follow
a totally different approach to find expressions for the competition index and the fraction
of land not in use by the plants. The latter fraction is easily found, if we realize that
it corresponds with the probability that no plants are present within a circle of radius r
from a randomly selected site. Since such a circle has surface area πr2, this probability is
the zero-probability of a Poisson distribution with parameter mπr2, i.e. exp{−mπr2}. To
obtain the competition index, it is helpful to note that the ratio of the actually and the
potentially occupied area of a plant corresponds with the probability Pr, say. Pr being the
probability that a randomly selected site within a circle with radius r from a randomly
selected plant is within its Dirichlett cell. This means that the distance between such a
site and our plant, say s, is smaller than any distance to other neighbouring plants. Given
a particular site, the latter probability equals exp{−mπs2}. We find Pr, by mixing the
latter probability with the probability density, f(s) say, of a random site at distance s from
the plant. This probability density is easily derived from its distribution function. The
probability that the distance between a random site within a circle of radius r and the
centre, is less than s, is πs2(πr2)−1. So f(s) ds = d

ds
πs2(πr2)−1 = 2sr−2 ds. So, Pr is given

by Pr =
∫ r
0 exp{−mπs2}2sr−2 ds = (mπr2)−1(1 − exp{−mπr2}). The competition index

is thus 1 − Pr, thus 1 − (mπr2)−1(1 − exp{−mπr2}), Fig.9.2. If the seed density, m, has
been chosen such that a full-grown plant just occupies an area equal to the mean surface
area of the Dirichlett cells, so πr2 = 1/m, the competition index is 0.368, while the same
fraction of land is still unoccupied.

In conclusion we can state that in random patterns the competition index and the
fraction of unused land is 10 times as high, compared with honeycomb patterns, if plants
are sowed as dense as possible. It seems safe to assume that growth, and so yield, is
increasingly retarded for increasing competition indices. Wether or not the difference
between the yield factors can be fully explained by the difference in competition indices,
is beyond the scope of the present analysis. Other factors of importance include nutrient
supply. The Babylonians seem to allow a significant amount of weeds growing between
the grain, which was sufficiently competitive to the weeds to defeat adverse effects on
growth. After the season, the weeds were plight through the soil, supplying adequate
nutrients as well as improving soil structure. The reason why the romans did not adapt
the babylonian techniques is possibly due to their aim of maximizing yield per man-hour.
(The Babylonians possibly used their hands in collecting grain for private use mostly.)
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Chapter 10

Many ways to hyperbolic responses

The feeding rate, v, of an animal as a function of food density, X, expressed as number
of particles per surface area or volume, is often well described by the hyperbolic function,
v = vmX/(K + X), where K is known as the saturation constant or Michaelis constant,
i.e. the density at which food intake is half of the maximum (Holling, 1969). It also well
describes the feeding rate of ciliates on organic particles (phagocytosis), or the uptake
of substrate by bacteria, or the enzyme mediated transformation of substrates. Although
these processes differ considerably in detail, some common principle might be rate limiting.
Let us try to study it.

Suppose that the handling time of a particle takes a certain time τ and that particles
arriving during handling are ignored. (”Handling” is meant here in the wide sense. For
feeding animals it might refer to the act of catching and eating as well as to decomposing
the particles in the gut or transfer of products across the gut wall.) It is not essential that
the handling time is fixed; It might be a random variable with mean τ , but is has to be
independent of food density. Suppose further that the number of particles arriving in a
unit of time is Poisson distributed with a parameter proportional to the particle density,
λ, say fλ. Here f relates to a filtering rate or a speed of the animal relative to the prey
particles, which is again independent of particle density. The time between subsequent
arrivals is then exponentially distributed, with mean 1/fλ. The time between the end of
a handling period and the next arrival is again exponentially distributed with mean 1/fλ.
(To see this, one should make use of a defining property for an exponentially distributed
variable Y , that both Y and Y |Y > y are identically distributed). The number, N , of
particles eaten in period T is thus given by T = N(τ + 1/fλ). The mean ingestion rate,
I = N/T , is thus I = 1/(τ + 1/fλ) = τ−1λ/{(τf)−1 + λ}, which is hyperbolic in the
density λ. The saturation constant is inverse to the product of the handling time and the
filtering (or searching) rate. The maximum ingestion rate is inverse to the handling time.
(Here we measure the ingestion rate by the ratio of a fixed number of particles eaten and
the mean time it takes the animal to do this. If we fix the feeding period, rather than the
number of particles eaten, the mean ingestion rate might, in principle, deviate from the
hyperbolic function. Moreover, we make sure that the particle density does not change)

So far, we considered one server, i.e. the individual, handling the particles. Now we
consider a large but fixed number, M , of identical servers handling particles simulata-
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neously, but without interference. Think of them as active sites (enzyme molecules) in a
membrane, of particles as substrate molecules and of catching as adsorption. If θ stands for
the fraction of busy servers, then is the change of this fraction due to new arrivals is given
by dθ/dt = kaλM(1−θ), where the rate constant ka, the absorption rate, plays exactly the
same role as the filtering or searching rate f . The change of the fraction of busy servers
due to finishing the handling of particles is proportional to the number of busy servers,
so it is given by dθ/dt = kdMθ, where the rate constant kd, the desorbtion rate, is just
inverse to the mean handling time τ . In equilibrium, the fraction θ does not change, so
kaλM(1 − θ) = kdMθ, or θ = Kλ/(1 + Kλ), with K = ka/kd. The fraction of occupied
sites as a function of the density of absorbtable particles (i.e. partial pressure in gasses),
is called the adsorption isotherm in physical chemistry. If the sites operate independently,
like here, and so give rise to a hyperbolic function, this isotherm is called the Langmuir
isotherm. The absorption rate of particles, is easily found by substituting the Langmuir
isotherm into the change in the busy fraction of servers:

kaλM(1− θ) = kaλM{1−Kλ/(1 +Kλ)} = kaλM/(1 +Kλ) = kdMλ/(K−1 + λ).

So the absorption rate depends hyperbolically on the particle density. The saturation
constant has the interpretation of the ratio of the desorption and the absorption rate
constants and the maximum absorbtion rate of particles equals the number of servers
times the desorption rate. If the desorbed particals are transformed with respect to the
absorbed ones, the process stands for an enzym mediated transformation of subtrate into
product. The simple kinetics discussed here is known as the Michaelis-Menten kinetics.
The condition of constant particle density can be somewhat relaxed. If the total number
of particles, L, is really large with respect to the number of servers (a condition by Briggs
and Haldane, 1925), or if the rate of product formation kd is really small (a condition by
Michaelis & Menten, 1913), or if KM is really small with respect to (K + L)2, (a more
general condition by Segel, 1984), the reaction still follows a Michealis-Menten kinetic.

Although the interpretation in terms of physical chemistry differs considerably from
the feeding individuals, from a more abstract point of view, the mechanisms are closely
related indeed. The essential element is the busy period and, if more servers are around,
they operate identically and idependently. It is quite well possible that the hyperbolic
response also arises from completely different mechanisms. Consider the next conjecture:
If a substrate is to be transformed into a product, which itself serves as a substrate for the
next step, etc, and if the response functions are all of the same type, one gets accumulation
of intermediates, if the response functions or not of the hyperbolic type. (Note that linear
response functions are a special case of the hyperbolic ones). This conjecture implies
that, if accumulation of intermediates has be prevented, the fouraging behaviour has to be
regulated in a way such that the response function is of the hyperbolic type. In this case,
there is no need for simple busy server mechanisms to generate a hyperbolic response.
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Chapter 11

Stochastic self-ionization of water in
cells

When a water molecule dissociates, one of its dipolar H-O bondsbreaks into a positively
charged hydrogen ion, H+, and a negatively charged hydroxyl ion, OH−. The hydrogen
ion, a proton,has a short lifetime as a free particle; its combines with a water molecule
to form a hydronium ion, H3O

+. This binding increases the valence angle of the water
molecule from 105◦ to 120◦, so making the added proton indistinguishable from the other
two. The extra proton possibly jumps from one water molecule to another. The precise
structure of liquid water is still not known with certainty, but for practical purposes it
is still convenient to refer to the concentration of hydrogen ions in a solution, [H+], even
though what is really meant is the concentration of hydronium ions. The dissociation
of water and the sociation of H+ and OH− are, in the mean in an otherwise constant
environment, equally fast processes and at 25◦C, we have [H+][HO−] = 10−14 M2. In a
pure water, [H+] = [HO−] = 10−7 M, which is frequently given in its log-transformed form:
pH = − log[H+], where [H+] is expressed as mole per litre.

The pH it one of the most important properties of a biological fluid. It influences e.g.
enzyme activities; a change in pH can trigger cell growth and division; the movements of
protons across a membrane, down the electrochemical gradient, is coupled to the synthesis
of ATP in chloroplasts, mitochondria and bacteria. The pH is found to be regulated
within a narrow band around a pH of 7, rather independent of the pH in the environment.
Yet, there might be a lower limit to the fluctuations due to the stochastic behaviour of the
dissociation of water. Think, for the sake of argument, of a bacterium of volume 0.25 mm3 =
0.25 10−15 dm3, consisting of pure water at 25◦C. For a specific density of 1 g/ mm3, it
weights 0.25 10−12 g. The number of water molecules is some (0.25/18) 6 1023−12 = 8 109,
while the number of protons is 10−7 6 1023 0.25 10−15 = 15. The relatively small number
of protons calls for a consideration of the stochastic fluctuation of the number of ’free’
protons.

We assume that each water molecule dissociates independently from the others with
a constant probability rate of k1. The probability rate of the binding of a proton with
a hydroxyl ion, is taken to be proportional to the product of their concentrations (and
so with their numbers in a fixed volume) with a proportionality constant of k2. The
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number of protons, say n, is necessarily the same as the number of hydroxyl ions because
of electroneutrality and mass balance. We can safely neglect the decrease of the number
of water molecules, say C, due to dissociation. If Pn(t) denotes the probability that the
number of protons at time t equals n, we have for n = 1, 2, · · ·

Pn(t+ ∆t) = k2(n+ 1)2 ∆t Pn+1(t) + k1C ∆t Pn−1(t) +

+ [1− (k2n
2 + k1C) ∆t]Pn(t) + o(∆t) (11.1)

where o(∆t) refers to the probability that more than one event (i.e. dissociation or binding)
occurs during a time increment ∆t. If we bring the term Pn(t) to the left, divide by ∆t
and let ∆t approach to zero, we arrive at

P ′n(t) = k2(n+ 1)2Pn+1(t) + k1CPn−1(t)− (k2n
2 + k1C)Pn(t) (11.2)

where P ′n(t) denotes the derivative of Pn(t) with respect to the time. For n = 0 we have

P0(t+ ∆t) = k2 ∆t P1(t) + [1− k1C ∆t]P0(t) + o(∆t) (11.3)

and so

P ′0(t) = k2P1(t)− k1C ∆t P0(t) (11.4)

which is a special case of (11.2) when we make the appointment that P−1(t) = 0. So, (11.2)
represents the stochastic model for the number of ’free’ protons.

By comparison, the corresponding deterministic model would be

n′(t) = k1C − k2n
2(t) (11.5)

Separation of variables and integration gives

n(t)−m
n(t) +m

=
n(0)−m
n(0) +m

e−t/τ , (11.6)

where m denotes the equilibrium number of ’free’ protons in the deterministic model, which

is given by m =
√
Ck1/k2, and τ the relaxation time, which is given by τ = 1/

√
4Ck1k2. At

25◦C, k1 = 2.4 10−5s−1 and k2 = 103 ion−1s−1 (in ice, k2 is faster!).This gives a relaxation
time of some 36µs.

We now continue with a further analysis of the stochastic model. As long as we are in-
terested in processes with relaxation times much longer than 36µs, we can confine ourselves
to the limiting probability distribution of n for large t, where we have that P ′n(∞) = 0.
When we divide by k2, call Ck1/k2 = m2, as before, and abbreviate Pn(∞) to Pn, (11.2)
reduces in the limit to

(n+ 1)2Pn+1 +m2Pn−1 − (n2 +m2)Pn = 0 (11.7)

Starting with P1 = m2P0, and using (11.7) in the form
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pH

cell volume, µm3

Figure 11.1: The 95%, 90%, 80%
and 60% confidence intervals of pH
in cells of pure water with pH 7 as
a function of the cell size. They
increase dramatically for decreasing
cell sizes for cells (or cell compart-
ments) less than 0.5 µm3. The
thick curve represents the mean pH,
which goes up sharply for very small
cell sizes.

Pn+1 =
(
(n2 +m2)Pn −m2Pn−1

)
(n+ 1)−2,

we find by induction that Pn = (mn/n!)2P0. This relation determines the probabilities up
to an arbitrary factor. Obviously, we must have that

∑∞
n=0 Pn = 1. The series I0(x) =∑∞

i=0(x/2)2i(i!)−2 is well known as the modified Bessel function. So
∑∞
n=0(m

n/n!)2 =
I0(2m). We therefore arrive at

Pn = (mn/n!)2I−1
0 (2m) (11.8)

This probability distribution relates to the Poisson distribution by just squaring the Poisson
probabilities and renormalizing to assure that the sum of the probabilities remains 1. The
normalizing constant I−1

0 (2m) in (11.8) compares with e−m in the Poisson distribution.
Since I ′0(x) = (2/x)

∑∞
i=0 i(x/2)2i(i!)−2, so

∑∞
n=0 n(mn/n!)2 = mI ′0(2m), the expected

number of protons equals µ = mI ′0(2m)/I0(2m). This is lower than the value m, which
should be expected on the basis of the deterministic model. This is obvious when we obtain
the variance by summing (11.7) for n = −1, 0, 1, · · · It is found to be σ2 = m2 − µ2 =

m2
(
1− (I ′0(2m)/I0(2m))2

)
. Although it is less than the variance of a Poisson distribution

with the same mean it is still considerable for small m, as is illustrated in Fig 11.1, which
shows that the 95% confidence interval of the pH in a 0.25 mm3 cell of neutral pH ranges
from 6.85 to 7.15.

The lifetime of a randomly selected water molecule, a hydroxylion and a hydronium ion
follow an exponential distribution with mean k−1

1 , i.e. some 4.16 104 s = 11.55 h, for water
and k−1

2 , i.e. some 10−3 s, for both ions at 25◦C. Diffusion causes these particles to displace
in time, t, over a mean distance of

√
2Dt, where D denotes the diffusion coefficient. For
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H2O, OH− and H+, the latter is 2.26, 5.3 resp. 9.31 10−5 cm2s−1 at 25◦C. The mean total
lifetime displacement in an unbounded body of pure water is thus 1.37 cm, 3.26µm and
4.32µm, as a crow flies. This means that the limited size of a cell is likely to influence the
transport, even apart from influences exercised by, e.g. the membrane.

We made some simplifying assumptions. The first one is that the cell consists of pure
water, which is obviously not true. Its cytoplasma is well buffered. Although a full anal-
ysis would certainly be immensely complex, it is by no means certain that the stochastic
fluctuations are more restricted in buffered mixtures. Buffers primarily balance net fluxes,
but we did not discuss that situation. The assumption that water molecules dissociate
independently from each other is hard to test at the moment. The significance of the
weak bonds certainly depends on temperature. The intention of the example is to draw
attention to the odd behaviour of the concept proton ’concentration’ in small bodies. It
might be relevant e.g. when we measure enzyme performance in well mixed extracts and
try to evaluate its consequence for the living cell.
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Chapter 12

How many extinct species?

The number of described living species still increases dramatically in groups like bacteria,
mites and insects. In groups like vertebrates or spermatophytes, the number of described
living species shows signs of saturation. How about the number of extinct species? The
conditions allowing fossilization to occur are rare. Most layers containing fossils are in-
accessible. The number of discovered accessible layers gradually increases with research
intensity. Here we will try to use preliminary knowledge about the number of living species
for estimating the number of extinct ones.

Suppose that a species gives rise to a new one with a constant probability rate, say
λ, and that it becomes extinct with another constant probability rate, say µ. The latter
implies that the existence time of a species follows an exponential distribution, with a mean
existence time of 1/µ. If N(t) denotes the number of living species at time t, M(t) the
cumulative number of species and pmn(t) the simultaneous probability that the number of
living species equals n and that the cumulative number of species equalsm, then pmn(t+∆t)
can be expressed as a function of pmn(t):

pmn(t+ ∆t) =

pmn(t){1− (λ+ µ)n∆t}+ pm−1,n−1(t)(n− 1)λ∆t+

+ pm,n+1(t)(n+ 1)µ∆t+ o(∆t) (12.1)

When we transport the term pmn(t) from the left to the right, divide both sides by ∆t and
let ∆t→ 0, we arrive at

p′mn(t) = pm−1,n−1(t)(n− 1)λ+ pm,n+1(t)(n+ 1)µ− pmn(t)n(λ+ µ) (12.2)

This simple model defines the probability evolution of both numbers of species, if we
specify the initial condition, e.g. p11(0) = 1. So we start with one single species for sure.
The marginal probability evolution of N (, obtained by dropping the index m in (12.2),)
is known as the linear birth and death process. We can extract useful information from
(12.2), without actually solving the complete probability distribution as a function of time.

The expected number of living species, EN , is found from (12.2) by multiplying both
sides with N and summing over all m and n. It is for this purpose convenient to define
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pmn(t) for negative values of m and n as well, but put them equal to zero. This allows us
to sum over m,n = −1, 0, 1, · · · We then arrive at

E ′N = λ EN(N + 1) + µ EN(N − 1)− (λ+ µ) EN2 = (λ− µ) EN (12.3)

For EN(0) = 1, we can solve EN(t):

EN(t) = exp{(λ− µ)t} (12.4)

In a similar way, we can multiply both sides of (12.2) by M , sum over all m and n, arriving
at

E ′M = λ E (M + 1)N + µ EMN − (λ+ µ) EMN = λ EN (12.5)

For EM(0) = 1, we can solve EM(t):

EM(t) = 1 +
∫ t

0
e(λ−µ)s ds = (λ E N(t)− µ) /(λ− µ) (12.6)

As an aside, we can evaluate the variance of N as follows. First we multiply both sides
of (12.2) by N2 and sum over all m and n, arriving at

E ′N2 = λ EN(N + 1)2 + µ EN(N − 1)2 − (λ+ µ) EN3

= 2(λ− µ) EN2 + (λ− µ) EN (12.7)

We then subtract the derivative of E2N , which is 2 EN E ′N :

var′N = E ′N2 − (E2N)′ = 2(λ− µ) var N + (λ+ µ) EN (12.8)

For var N(0) = 0 and noting, in general that Y ′ = cY + f(t) has Y (t) = Y (0)etc +∫ t
0 e

(t−s)cf(s) ds as solution, we find

var N(t) = (EN(t)− 1) EN(t)(λ+ µ)/(λ− µ) (12.9)

This means that the variation coefficient of N is given by

CV N(t) ≡
√

var N(t)/ EN(t)→
√

(λ+ µ)/(λ− µ) (12.10)

So, as for branching processes, the variation coefficient approaches a constant value. This
is not mere coincidence, because the linear birth and death process can be conceived as
a branching process by letting the generation time shrink to an infinitesimally small time
increment ∆t, while the offspring distribution for 0,1 or 2 young has been tied to this
increment via the probabilities µ∆t, (1− (λ+ µ) ∆t) and λ∆t.

In a similar way, we obtain

cov′MN = (λ− µ) cov MN + λ EN + λ var N (12.11)

which gives for cov MN(0) = 0:
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cov MN(t) = (var N(t)− 2µt EN(t))λ/(λ− µ) (12.12)

and

var′M = 2λ cov MN + λ EN (12.13)

which gives for var M(0) = 0:

var M(t) =
λ

(λ− µ)2

[
λ var N(t) + µ EN(t)(

λ+ µ

λ− µ
− 4λt)− µλ+ µ

λ− µ

]
(12.14)

from which follows that CV M(t) → CV N(t) for large t, and that the correlation coeffi-
cient between M and N approaches 1 for large t.

The expected number of extinct species is given by EM(t) − EN(t). Using (12.6), we
find that EM(t)−EN(t) = EN(t)µ/(λ−µ). Since µ equals (mean species existence time)−1

and λ− µ equals (ln expected no of living species)/(evolution time), we have that

no of extinct spec.

no of spec.
=

evolution time

mean spec.existence time . ln no of spec.

For vertebrates, which fossilize relatively well, due to their hard bones, the evolution time
took some 600 Ma to arrive at some 42000 living species. The mean existence time of
vertebrate species is estimated to be some 2-3 Ma, based on fossil records, which means
that for each living species, we expect some 600/(2.5 ln 42000) ' 23 extinct ones. The
values for λ and µ might differ between phyla. If we roughly estimate 30 million living
eukaryotic species to exist, which took some 2000 Ma to evolve, and if we adopt the
vertebrate mean species existence time, we expect some 46 extinct species for each living
one.

This model is irrealistically simple. This is obvious from the fact that, for this model,
the extinction probability of a richly diversified group is extremely small. Yet such groups,
like trilobites, ammonites and dinosaurs, became extinct, nonetheless. At present, the
possible occurrence of periodic mass extinctions is in hot debate. Such complicating phe-
nomena would only increase the number of extinct species to be expected. The above
calculations could therefore be considered as a lower bound on the number of extinct
species.

During the last 300 year, 150 vertebrate species have been recorded to became extinct,
mainly due to direct or indirect action of man. The expected extinction rate equals µ EN ,
which amounts to some 5.6 species in the last 300 year. The proper answer to the question
posed in the title is therefore: too many!

Further reading on vertebrate evolution: [Carroll, 1988]; On ’natural’ and man-
induced extinctions: [Stanley, 1987, Lewin, 1986]. Example 6 for extinction and variation
coefficients in branching processes.
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Chapter 13

Sitting out a lag phase

In a constant environment, a population of bacteria is growing exponentially after some
lag phase, both in number as in biomass, i.e. the change in biomass is proportional to
the biomass itself. Almost all chemical reactions in the synthesis of biomass are enzyme
mediated. Yet enzymes in isolation do not increase autocatalytically. This contradictions
first calls for a closer analysis.

Suppose that we have two enzymes each of which increases its substance by the addition
of something derived from the working of the other. Then we shall have

X ′1 = µ1X2 and X ′2 = µ2X1 (13.1)

Think e.g. of the interplay of nucleic acids and proteins, each of which playing a decisive
role in the synthesis of the other. In order to obtain the solution of (13.1), we first write
it as

X′ ≡
(
X ′1
X ′2

)
=

(
0 µ1

µ2 0

)(
X1

X2

)
≡MX (13.2)

If B is the matrix with eigenvectors of M in its columns, and Λ the diagonal matrix with
eigenvalues, so MB = BΛ, the solution of (13.2) can be written like

X(t) = eMtX(0) =
∞∑
i=0

1

i!
(Mt)iX(0) =

∞∑
i=0

1

i!
B(Λt)iB−1X(0)

= B

( ∞∑
i=0

1

i!
(Λt)i

)
B−1X(0) = B

(
eλ1t 0
0 eλ2t

)
B−1X(0)

The eigenvalues λ1,2 of M are easily found to be ±√µ1µ2, and

B =

 √
µ1/µ+ −

√
µ1/µ+√

µ2/µ+

√
µ2/µ+

 , so B−1 =
1

2

 √
µ+/µ1

√
µ+/µ2

−
√
µ+/µ1

√
µ+/µ2


with µ+ = µ1 + µ2. Substitution finally results in
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Xi(t) = Pie
µt +Qie

−µt, for i = 1, 2 (13.3)

with Pi +Qi = Xi(0) and µ = λ1 =
√
µ1µ2. This leads to

X1(t) =
1

2

(
X1(0) +

µ1

µ
X2(0)

)
eµt +

1

2

(
X1(0)− µ1

µ

)
e−µt

X2(t) =
1

2

(
X1(0) +

µ

µ1

X1(0)

)
eµt +

1

2

(
X2(0)− µ

µ1

)
e−µt (13.4)

Ultimately, the second term in (13.4) vanishes and the ratio X1/X2 becomes constant at
value µ1/µ and the population grows exponentially. So the cyclic autosynthetic reactions
as modelled in (13.1) is consistent with exponential growth of biomass, indeed.

For the purpose of, e.g., relating the chemical composition of cells to that of the medium,
one needs cells growing at steady state (here: growing exponentially). After inoculation,
the culture usually shows a lag phase (i.e. a deviation from exponential growth, which
becomes apparent by plotting the logarithm of the number of cells against time). So we
have to wait a while before taking the sample material. Now, let us study the length
of the lag phase, t(µ1, µ2), after a (momentary) transition from an environment in which
the population was growing exponentially at rate µ = µ′, into and environment in which
the population eventually will grow exponentially at rate µ = µ′′. If both µ1 and µ2 are
proportional to µ, there will be no lag phase at all, i.e. t(µ′, µ′′) = 0. It seems realistic to
assume that only one, say µ1, is increasing with µ, while the other remains constant, so
µ2 = µ2/µ1.

From a mathematical point of view, we have to wait infinitely long for exponential
growth, since the second term in (13.4) vanishes only asymptotically. Being practical, let
us accept exponentiality, if the relative error of the number of cells is less than a small
fraction ξ, i.e. |X1(t)−X∗1 (t)|/X∗1 (t) = ξ, where X∗1 (t) represents the first term in (13.4),
i.e.

X∗1 (t) =
1

2
(X1(0) + (µ1/µ)X2(0)) eµt

.
This leads to

∣∣∣∣∣1− µ1

µ

X2(0)

X1(0)

∣∣∣∣∣ e−2µt

(
1 +

µ1

µ

x2(0)

X1(0)

)−1

= ξ (13.5)

The same can be done for X2, of course, but this will lead again to relation (13.5). When we
choose a certain value for ξ, we can solve the length of the lag phase t, given X1(0)/X2(0) =
µ1/µ

′ and µ = µ′′. The solution is

t(µ′, µ′′) =
1

2µ′′
ln
|1− µ′/µ′′|
ξ(1 + µ′/µ′′)

(13.6)
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The range of values for µ′ and µ′′ is restricted to (0, µ∗), because for negative values, the
only steady state is that of being extinct, while values larger than the maximum growth
rate µ∗ are biologically impossible. A natural scaling for the length of the lag phase is
therefore the dimensionless variable t∗ = µ∗t, expressed in terms of the dimensionless
arguments λ = µ/µ∗. We arrive at

t∗(λ′, λ′′) =
1

2λ′′
ln
|λ′′ − λ′|
ξ(λ′′ + λ′)

(13.7)

A plot of (13.7) is given in Fig.13.1. If µ′ and µ′′ differ only a little bit, i.e. when
(1 − ξ)/(1 + ξ) < µ′′/µ′ < ((1 + ξ)/(1− ξ)), the apparent lag phase is zero, which is
the result of our acceptance of a relative error of ξ. This is a bit artificial, which becomes
obvious when we could slowly increase or decrease µ. We would have to wait a time zero for
each incremental change, in other words, we would not have to wait at all for any change.
The relative errors would built up this way, far beyond our setting of ξ, of course. Apart for
this artifact, some rather counter-intuitive results are obvious from Fig.13.1. The length of
the lag phase in an up shift, is not equal to that of a down shift, i.e. t∗(λ′, λ′′) 6= t∗(λ′′, λ′).
Further: Starting from a small initial growth rate, we have to wait longer to reach steady
states for a bit higher new growth rate, than for a much higher one. Finally: We have
to wait really long in case of a significant down shift. This illustrates that it is extremely
difficult to standardize the cells to conditions of a small growth rate. This is important,
because this is the usual condition outdoors, which we need to reach when we want, e.g,
to exclude growth for the study of maintenance.

These results are possibly easier to remember, when we express the lag phase in the
number of division intervals in the new situation, where µ = µ′′. In steady state we have
N(t + d) = N(t) exp{µ′′d} for the number of bacteria at time t + d, which equals 2N(t),
for time d(µ′′) = µ′′−1 ln 2. If we divide the lag time in (13.6) by this division interval, we
arrive at

t(µ′, µ′′)

d(µ′′)
=

1

2 ln 2
ln
|µ′′ − µ′|
ξ(µ′′ + µ′)

(13.8)

The role of µ′ and µ′′ in (13.8) is now symmetric, and the largest number of division
intervals in the lag phase, i.e. when µ′ or µ′′ equals 0, is −(ln ξ)/(2 ln 2). See Fig.13.1.

The model (13.1) can easily be extended to more than two types of enzyme, in which
case the population growth rate, µ, equals the geometric mean of the rate of increase of
the different enzyme types, µ1, µ2, µ3, · · ·. It remains rather easy, because of the linearity.
Such a system can be conceived as a first approximation to the more usual hyperbolic
rate functions, where the substrate concentrations are small with respect to the saturation
constants (see example 10).

Although the presented modelling of population growth in terms of chemical reactions
is considered standard in microbiology (, the classical results given in Hinshelwood (1952)
are followed here), a warning seems appropriate for skipping levels of organisation (here:
the cell), and a too loose reference to variables that can be measured directly or indirectly.

Further reading for a classical and still relevant work on enzyme performance in
growing cells: [Hinshelwood, 1952].
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Figure 13.1: Left: Contours for the length of the lag phase following a transition from one
exponential growth rate to another, accepting a relative error of 0.05. The growth rates are
expressed as fractions of the maximal growth rate. The contours of values 5, 2.5, 1, 0.5 and 0
are shown for the time lag times the maximum growth rate times −2/ ln ξ. Right: the lag-phases
expressed as numbers of division intervals while in the new growth rate. The contours of values
2, 1.5, 1, 0.5 and 0 are shown
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Chapter 14

How many cytochromes?

Cytochromes are membrane proteins that contain a heme prosthetic group similar to that
in hemoglobin or myoglobin. Therefore they have a large number of resonance forms,
which can be made visible through their elaborate light absorption spectra. Differences in
heme structure result in differences in absorption spectra as well as reduction potential,
or tendency to accept an electron. Because of their role in cell energetics, it is important
to determine the number of different cytochromes in a living cell, and their respective
absorption spectra. The usual approach is to extract them from the membranes, purify
them through e.g. electrophoresis and determine their spectra in solution. This procedure
might strongly change the cytochromes. Below, we will describe how partial modelling
can be used to unravel the different spectra of each cytochrome, from a table of extinction
coefficients of an unknown mixture of membrane bound cytochromes for different electric
potentials and wave lengths.

The modelling makes use of the fact that the reduced form of cytochomes absorb light
several orders of magnitude better than the oxidized form. The model is then the Nernst
equation for the potential with respect to the standard hydrogen electrode, E, as a function
of the ratio of the concentration of oxidized cytochrome, co, and the reduced one, cr:

E = E0 + ln{co/cr}RT/F (14.1)

where E0 denotes the midpoint potential of the redox couple at pH 7.0 (in mV), R the
gas constant (8.314 J K−1mol−1), T the absolute temperature and F the Faraday constant
(96.494 J mV−1mol−1). So, at 298 K, RT/F = 25.68 mV. Obviously, we have that co+cr =
c+, which is constant, so co = c+ − cr. Rearrangement of (14.1) gives

cr = c+[1 + exp{(E − E0)/25.68}]−1 (14.2)

The absorption at a certain wave length λi, at a potential Ej, is assumed to be just the
sum of the separated absorptions of the different cytochromes, plus and independent error
in measurement. The expected extinction coefficients is thus

xij =
∑
s

aispjs with (14.3)
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pjs = [1 + exp{(Ej − E0s)/25.68}]−1 (14.4)

The extinction coefficients to be measured are taken to be

xij + ξij (14.5)

where the measurement errors ξij’s are assumed to be independently normally distributed
with a common variance σ2. We will assume that there exists l different cytochromes,
where l is a number chosen through a procedure still to be described. If we collect the
coefficients in matrices, through X ≡ {xij}rk, A ≡ {ais}rl, P ≡ {pjs}kl and bfΞ ≡ {ξij}rk,
the expected extinction coefficients can be compactly written as

X = APT + Ξ (14.6)

Through the introduction of a free parameter for the extinction of each cytochrome at a
specified wave length, we do not assume any functional form for the absorption spectra. We
buy this flexibility with a significant amount of parameters. For a table of rk measurements
(i.e. extinction coefficients Y ≡ {yij}rk) with r wavelengths and k potentials, we have
(r + 1)l + 1 parameters (i.e. rl parameters A, l parameters for E ≡ {E0s}l and σ2). We
can only hope to estimate all these parameters if k � l and if the range of potentials covers
the range of sufficiently different midpoint potentials to some extend.

We estimate the parameter values from the measurements on the basis of the maximum
likelihood criterion. So, have to maximize the ln likelihood

lnL(A,E, σ2) =
−rk

2
ln{πσ2}+

1

2σ2

∑
ij

(xij − yij)2 (14.7)

as function of the listed arguments. The values for the A and E for which this maximum
of lnL is reached, called Â, Ê and σ̂2 are the sought parameter values. We obtain them
by solving

d lnL(Â, Ê, σ̂2)

d ais
= − 1

σ̂2

∑
j

(yij − x̂ij)p̂js = 0 (14.8)

for i = 1, · · · , r; s = 1, · · · , l
d lnL(Â, Ê, σ̂2)

dE0t

=
−1

25.68 σ̂2

∑
ij

(yij − x̂ij)âitp̂tj(1− p̂tj) = 0 (14.9)

for t = 1, · · · , l
d lnL(Â, Ê, σ̂2)

d σ2
=
−rk
σ̂2

+
1

2σ̂4

∑
ij

(yij − x̂ij)2 = 0 (14.10)

The caps on x and p indicate that Â, Ê and σ̂2 must be substituted in the defining equations
(14.3) and (14.4). Equations (14.8) and (14.9) are also obtained using the least squares
criterion for estimating the parameters. Because of (14.5), this model can be classified as
a non-linear regression one. The solution of (14.8) is
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Â = YP̂T (P̂P̂T )−1 (14.11)

The solution of (14.10) is

σ̂2 =
1

rk

∑
ij

(yij − x̂ij)2 (14.12)

The solution of (14.9) is less easy to obtain. The leading factor can be omitted, of course,
but that is all we can do simplifying (14.9). We have to solve it numerically. We define

ft(E) =
∑
ij

(yij − xij)aitptj(1− ptj) (14.13)

where we substitute (14.11) for the values A (which also occur in X). We then find a
solution for E, through the Newton Raphson procedure, for F ≡ {ft}l

Ei+1 = Ei − [F′(Ei)]
−1F(Ei), i = 0, 1, · · · (14.14)

where the sequence of vectors Ei, i = 0, 1, · · · converge to the sought vector Ê after an
appropriate choice for E0. The expression for the derivative of F with respect to E,
denoted by F′ in (14.14), is extremely massive. This is one obvious place where a numerical
evaluation makes life bearable. So we take

f ′st(E) ' (fs(E01, · · · , E0,t−1, E0t + d,E0,t+1, · · · , E0l)− fs(E)) /d

for some small chosen value for d. Note that for each iteration in (14.14), we have to
calculate A in (14.11) 1 + l times to obtain F and F′. The size of required computer
memory and time depends on r, k and l. Because we were able to get explicit expressions
for most parameters, i.e. 1 + rl, only l parameters have to be obtained numerically. In
practice this means that, provided that l is not too large, the calculations do not give rise
to serious problems. We now discuss the way to determine l.

When we choose l = 1, 2, · · · we introduce rapidly more parameters, which results in an
increasingly better fit, irrespective of the real number of cytochromes. This is reflected in
the value of the ln likelihood function in the point of the maximum likelihood estimates,
which is given by

lnLl(Â, Ê, σ̂
2) =

(
1− lnπσ̂2

)
rk/2 (14.15)

where the index l is attached to indicate that L depends on l. In order to decide on the
value for l, we study the increase in fit through the likelihood ratio statistic

λ(l) ≡ 2 lnLl(Â, Ê, σ̂
2)− 2 lnLl−1(Â, Ê, σ̂

2)

=
(
ln σ̂2

l − ln σ̂2
l+1

)
rk (14.16)

Here, again, the index l is attached to σ̂2 to indicate that it depends on l. Application of
the likelihood ratio theory learns that the proper value for l is found, when, for the first
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time for increasing l, λ(l) is not unlikely to represent a random trial from a χ2 density
with parameter r + 1. This is decided when λ(l) is less than the upper α-quantile for
the chi-square density with parameter r + 1, at probability of an error of the first kind of
α. The strict application of the likelihood ratio theory is a bit problematic in this case,
because the number of parameters is increasing with the number of wave lengths. It does
not increase with the number of potentials, however.

After having determined l, this way, we can test the model through the residuals Y −X,
which should represent random (independent) trials form a normal density. If the model
fails the test, we could try to improve it by e.g. assuming that the error of measurement
is proportial to the mean. We then arrive at a bit more complicated likelihood function,
but no new estimation problems arise.

Figures 14.2 and 14.1 illustrate the application of the presented theory for Escherichia
coli -data from [Wielink, 1986]. This bacterium appears to posses 4 cytochromes.
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Figure 14.1: The estimated absorption spectra of the cytochromes of E. coli, assuming that it
is a mixture of 1, 2, 3, 4 or 5 different cytochromes. The midpoint potentials are given.
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number of cytochromeslog likelihood

Figure 14.2: The plot of the supremum of the ln
likelihood function, as a function of the number
of different cytochromes. We should decide that
there are 4 different cytochromes at α = 0.01.



Chapter 15

A flock as shy as the shiest

Walking along the beach in winter, one is likely to meet a flock of sandpipers. When
approaching, one bird usually grows nervous and the flock flies off. The minimum distance
tends to increase with the size of the flock. Approach at close range seems only possible
for solitairy individuals. Social effects, like reassurance for being only one of the many
potential victims of the approaching ’predator’, can only be studied after we know what
to expect when the individuals are independent.

Suppose the critical distance, d1, below which an individual will fly off in a certain
circumstance is characteristic for that individual, and can be conceived as a random trial
from some probability density, f1(x) dx. The probability, Fm(x), that the flock of size m
does not fly off at distance x equals the probability that all m critical distances less than
x, so

P{dm < x} ≡ Fm(x) = Fm
1 (x) (15.1)

where F1(x) is the distribution function of the critical distance for a single individual, i.e.
F1(x) =

∫ x
0 f1(y) dy. The derivation of densities of extremes is easy by using distribution

c.q. survivor functions. When evaluating expected values, we use the property for non-
negative random variables, that the expected values equals the integral (c.q.sum) over the
survivor function. The expected critical distance is thus

Edm =
∫ ∞
0

(1− Fm(x)) dx =
∫ ∞
0

(1− Fm
1 (x)) dx (15.2)

Since 0 < F1(x) < 1, we know that Edm must be a non-decreasing function of m. We have
to specify F1, however, before we can tell more about the behaviour of Edm as function of
m.

Suppose that d1 follows a nearest neighbour distribution, so

F1(x) = 1− e−sx2

(15.3)

where s is a parameter (the species-specific ”shyness-parameter”). Then,

Edm =
∫ ∞
0

(
1−

(
1− e−sx2

)m)
dx
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Figure 15.1: The expected critical distance as a
function of flock size in units of that of a single
individual. The critical distance of a single indi-
viduals is assumed to follow a nearest neighbour
(green) or an exponential distribution (red).

=
∫ ∞
0

(
1−

m∑
i=0

(mi )
(
−e−sx2(m−i)

))
dx

=
m−1∑
i=0

(mi )(−1)m−i+1
∫ ∞
0

e−sx
2(m−i) dx

=
m−1∑
i=0

(mi )
(−1)m−i+1

√
π√

8s(m− i)

=
√
π/8s

m∑
i=1

(mi )(−1)i+1/
√
i (15.4)

So

f(m) ≡ Edm / Ed1 =
m∑
i=1

(mi )(−1)i+1/
√
i (15.5)

A plot of f(m) against m is given in Fig.15.1. We see that, although f(m) does not have
an asymptote, because F1(x) approaches 1 asymptotically, it increases very slowly for m
larger than 8.

If we choose an exponential distribution for d1, so we replace (15.3) by

F1(x) = 1− exp−tx (15.6)

we find

Edm =
∫ ∞
0

(
1−

(
1− etx

)m)
dx = t−1

m∑
i=1

(mi )(−1)i+1/i (15.7)

So

f(m) = Edm/Ed1 =
m∑
i=1

(mi )(−1)i+1/i =
m∑
i=1

1/i (15.8)

This one has not an asymptote either, but it levels off less rapidly. (see Fig.15.1) This is
because the exponential density has a thicker tail compared to the nearest neighbour one.
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The first one is proportial to exp{−tx}, while the second one is proportial to exp{−sx2}.
Tail thickness is thus closely connected with the expected value of the extreme, as function
of the number over which the extreme is taken. Indeed, for F1(x) = (x > u), we have
Edm = u, irrespective of m.

When walking on the beach, we fail to notice that large flocks are much shier than
small ones, this does not automatically indicate that their is social interaction, apart from
flie when the shiest flies. In order to detect such interaction, we first have to identify the
critical distance distribution for single individuals.
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Chapter 16

The opening and closing behaviour of
ion channels

From a cell physiological point of view, the mechanism of the opening and closing of ion
channels in nerve cells is very important. However, it is not so easy to perform experiments
at molecular level, so these mechanisms must be inferred indirectly from measurements of
total cell performance. It is possible to measure the electrical flux between two clamps
attached to a dendrite of a single cell. It varies somewhat in time, and the first question
is: can we make use of these variations in time to disentangle the opening and closing of
individual channels? With aid of a model for the behaviour of these channels, it is possible
indeed.

The argument runs as follows. Assume that the electrical flux is proportional to the
number of ion channels that are open. Assume further that the probability that a randomly
chosen closed channel will open in an incremental time interval ∆t equals λ∆t. Similarly,
the probability that a randomly chosen open channel will close in that interval is assumed
to be µ∆t. For the moment we will assume that the probability rates λ and µ are constant
and that the probability that a channel opens as well as closes in ∆t is negigibly small.
When N denotes the number of channels between the clamps, n the number of channels
that are open and t the time, the probability that there are n open channels at time t is
given by

Pn(t+ ∆t) = Pn(t)(1− µ∆t)n(1− λ∆t)N−n +

Pn−1(t)(1− µ∆t)n−1(1− λ∆t)N−nλ∆t(N − n+ 1) +

Pn+1(t)(1− µ∆)nµ∆t(n+ 1)(1− λ∆t)N−n−1 (16.1)

To simplify the notation, we assume that P<0(t) = P>N(t) = 0. If we let ∆t approach to
zero, we arrive at

d

dt
Pn(t) = −Pn(t)(µn+ λ(N − n)) + Pn−1(t)λ(N − n+ 1) + Pn+1(t)µ(n+ 1) (16.2)

This equation describes the opening and closing behaviour of ion channels, in which we
consider N , λ and µ as parameters to be estimated from a continuous registration of the
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electrical flux, so the number of open channels. With a very small probability, all channels
are open at a given time, so when we wait long enough, the maximum flux over a very
long time bears information about the number of channels N . However, it is very hard
to keep conditions constant over such long a period. Therefore we will not make use of
this possibility. What we will do is use the mean, the variance and the autocovariance
function to lead us to the three parameters. The mean and variance can be deduced from
the equilibrium distribution for n, i.e. the case where d

dt
Pn(t) = 0. Using (16.2) we obtain

Pn(∞) =

(
N
n

)(
λ

λ+ µ

)n (
µ

λ+ µ

)N−n
(16.3)

This we recognize as the binomial distribution with mean M = λN
λ+µ

and variance V =
λµN

(λ+µ)2
.

The straightforward way to obtain the covariance function is first to solve Pn(t) from
(16.2) from the initial condition Pm(0) = 1. Let us call this solution Pn,m(t). When we
denote the equilibrium distribution by Pn, the (equilibrium) autocovariance function is
given by C(τ) =

∑
m,nmnPmPn,m(τ) −M2. The problem now is that it is very laborious

to obtain Pn,m(τ). In this case it is helpful to note that we do not need it explicitely, we
only need it as a weighted sum over all n and m. We therefore try to convert the set of
differential equations of all the Pn(t)’s into one for the autocovariance function. We note
that d

dt
C(τ) =

∑
m,nmnPm

d
dt
Pn,m(τ), with C(0) = V . From (16.2), we obtain

∑
m,n

mnPm
d

dt
Pn,m(τ) = −

∑
m,n

mnPmPn,m(τ)(µn+ λ(N − n)) +∑
m,n

mnPmPn−1,m(τ)λ(N − n+ 1) +∑
m,n

mnPmPn+1,m(τ)µ(n+ 1) (16.4)

After some manipulation, we obtain the simple expression

d

dt
C(τ) = −C(τ)(λ+ µ) (16.5)

which leads to C(τ) = V exp{−(λ+ µ)τ}. So the autocovariance function decreases expo-
nentially with rate λ+ µ.

It is instructive to relate this model formulation with a very simple deterministic one,
where we assume that n is large enough to allow a continuous approximation. When the
opening of channels is proportional to the number of closed channels and the closing of
channels is proportional to the number of open channels, we have d

dt
n = λ(N −m)−µn =

λN − (λ+ µ)n. The solution is n(t) = M − (M − n(0)) exp{−(λ+ µ)t}, and we recognize
(λ+ µ)−1 as the relaxation time.

Back to the stochastic model now. The simplest way to proceed is to uncover λ + µ
from C(τ). We can do this e.g. by plotting lnC against time and fit a straight line.
Although this procedure must be classified as ”quick and dirty”, it is not at all obvious
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how to formulate a ”clean” procedure. Next we multiply λ + µ by V/M and obtain µ.
Subsequently we uncover λ and N .

The ability to disentangle the opening from the closing rate can be very valuable in the
experimental research to which (environmental) factors influence both mechanisms. The
constraint that λ and µ are constant can be relaxed to the constraint that the rate at which
they vary is small with respect to λ+ µ.
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Chapter 17

Shape constraints for isomorphs with
permanent exoskeletons

Isomorphism is an important property, which can keep life simple for the researcher as well
as the organism: When the relative size of the different organs, uncluding the secreting
ones, does not change during development a number of regulating mechanisms does not
have to change as well.

When isomorphic animals change their outer surface area during development and
growth in a way that includes transformation, there are little constraints for their shape.
However, when they only add new surface area, leaving the existing surface area untouched,
there are rather strong constraints for their shape. The present conjecture is that they are
composed of one or more subunits that must belong to one of two 3 parameter families of
logarithmic spirals, which are described here.

We focus on animals starting from an infinitesimal size. Theory on energy uptake and
use for isomorphs predicts that, when feeding conditions do not change, there exists an
ultimate size, which we now use to define the shape. More in particular, we define a three
dimensional closed mouth curve, x(0), which is part of the outer surface area and a center
point, f(0), which is part of the logarithmic spiral at argument value l = 0.

The logarithmic spiral is given by

f(l) = cl/2π(b, a sin−l, a cos−l) (17.1)

with l ∈ (−∞, 0] and c > 0 (see Figure 17.1). It has the important property that f(l+h) =
ch/2πR(−h)f(l) where R is a rotation matrix around the x-axis

R(h) =

 1 0 0
0 cosh sinh
0 − sinh cosh


The mouth curve for argument l is given by

x(l) = f(l) + cl/2πR(−l)(x(0)− f(0))

= cl/2π((b, a sin−l, a cos−l) +R(−l)(x(0)− (b, 0, a)) (17.2)
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Figure 17.1: The logarithmic spiral
lies on a cone around the x-axis with
vertex at the origin, and tangent a/b
of the divergencing angle with respect
to the axis. The normalized direc-
tion vector of the spiral from the ver-
tex, (a2 + b2)−1/2(b, a sin−l, a cos−l), de-
scribes a circle in the (y, z)–plane at x–
value b/

√
a2 + b2, when we let argument l

walk.

The parameters (a, b, c) plus mouth curve together determine the shape.

The curves x(l), describe the outer surface area of the animal, i.e. its exosketelon. For
isomorphism, it should occupy only the interval (l − h, l) for some h <∞, if a 6= 0.

A defining property of isomorphism is that all length measures depend on size in the
same way. It is not difficult to show that ‖x1(l + h) − x0(l)‖ ∝ cl/2π, for some h, and
x0(0), x1(0) ∈ x(0), where the proportionality constant does not depend on l.

The present class of morphs is too wide for being physically possible. First of all we must
exclude negative growth at the mouth curve. The orientation of the mouth curve should
be such that a mouth opening results and the shape may not ’bite’ itself when walking
along the spiral. However, it is extremely tedious to translate these physical contraints
into mathematical ones.

In order to construct a particular morph, it might be easy to first orientate the mouth
curve, x∗(0), such that the centre point is at (0, 0, 0), the vertex has a x-value of 0 and
the logarithmic spiral starts off in the y-direction, i.e. f ′(0) = (0, 1, 0), with f ′(l) ≡
d
dl
f(l)/‖ d

dl
f(l)‖. We then back transform x∗(0), to x(0) according to x(0) = (b, 0, a) +

Qx∗(0), where the rotation matrixQ is given byQ(0, 1, 0) = (a2+(a2+b2)( ln c
2π

)2)−1/2(b ln c
2π
, a, a ln c

2π
).

Uptil now, no explicit reference to time has been made. When we assume that a length
measure of the animal follows a von Bertalanffy growth pattern, i.e. 1−e−γt for t ∈ (0,∞),
we have the relation cl/2π = 1− e−γt. So, l = 2π

ln c
ln{1− e−γt}. This is realistic when food

density and temperature remain constant. In winter, when growth ceases in the temperate
regions and calcification partially continues in molluscs, a thickening of the shell occurs,
which is visible as a ribble. Neglecting the gradual transitions between the seasons, we
expect these rings thus at l = 2π

ln c
ln{1− e−γi}, i = 1, 2, 3, · · ·, when the unit of time is one

growth season. In principle, this offers the possibility to the determine the von Bertalanffy
growth rate γ from a single shell found dead along the beach.

Shell height is sometimes taken as a characteristic length of the animal. Since the liv-
ing animal should be confined to a fixed interval, this length measure includes part of the
exoskeleton, which is abandoned. However the length of the interval has no consequences
of the shape of the exoskeleton. Irrespective of the actual interval, we can take its length
very large, which makes the distance from x(l − h) to the vertex negligibly small. There-
fore, shell height will approximate a von Bertalanffy growth curve, when food density and
temperature remain constant.
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When a = 0, so f(l) = cl/2π(b, 0, 0), a second family of isomorphs is given by

x(l) = cl/2π((b, 0, 0) +R(dl)(x(0)− (b, 0, 0)) (17.3)

where d is a tordation parameter. For d = 1, this family belongs to the first one.
The models can generate complex shapes. Most shapes are simple and correspond with

special cases. For d = 1 and b = 0, we arrive at shapes like Planorbis and Nautilus. When
a→ 0, the logarithmic spiral straightens to a line like in Patella. When b→ 0 as well, we
arrive a growing sheet.

Animals like bivalves and brachiopods have two logarithmic spirals, sharing the same
mouth curve. One turns clockwise, one anti–clockwise. This can be obtained by deleting
the minus signs in (17.1), (17.2) and (17.3). There is no need for both spirals to be identical
or symmetric to produce isomorphs. In many species they are different in fact. Isomorphic
shapes are possible with more compounds, like in goose barnacles.
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Mytilus, a=0.01, b=0.01, c=104 Ensis, a=0, b=0, c=105

Patella, a=0, b=3, d=0 Lymnaea, a=0.01, b=3.5, c=2

Nautilus, a=0, b=0, c=3 Spirula, a=3, b=0, c=5



Chapter 18

The basis of colours

Colour is a human sensation which has little to do with plain physics and a lot with biology.
Every very small (part of an) object around us emits electro magnetic energy, which meets
the eye. Its image is projected onto the retina. Because of the rapid elliptical movements
of the eye, the image describes an elliptical trajectory on the retina. Let e(λ) be the
energy density at wavelength λ of the image, so

∫ λ2
λ1
e(λ) dλ is the total amount of energy

between wave lengths λ1 and λ2. Due to the ellitical movements of the eye, the image
meets different sensors for electromagnetic radiation, that have different sensitivities for
the different wave lengths. For simplicity’s sake we here assume that the signal output of
the sensor is proportional to the input. Let wi(λ) be the energy signal conversion of sensor
i at wavelength λ, so si =

∫∞
0 e(λ)wi(λ) dλ is the signal of sensor i, if all the separate

contributions of the different wave lengths just add up. The actual signal is approximately
hyperbolically transformed, like si

K+si
, but this is at present of no importance.

It seems that most of us have got three different types of sensors. So, the total signal
we receive can be represented as ~s ≡ (s1, s2, s3), which we call sensation.

The lower end of the sensitivity range is around 420 nm, where we have a sensation
which we call violet, and an upper limit of 67 nm, where we have a sensation which we
call red. The range has no sharp limits. Every possible sensation can be represented by a
point in the three dimensional sensation space. The sensors have a considerable overlap in
sensitivities. Therefore it is not possible to stimulate only one sensor, without stimulation
the others to some extend. This means that not all points in the sensation space can be
reached in practice. Suppose that there exists a fixed minimum threshold of the signal we
can detect, the range depends on the energy input E, which we experience as intensity.
The relative firing rate of the three sensors we experience as colour.

Any choice of three different colours (i.e. sensations)

~ci = c1i~s1 + c2i~s2 + c3i~s3 with i = 1, 2, 3 (18.1)

can in principle be used as a basis for the sensation space, as long the corresponding
three vectors are not in the same plane. So all colours, like white, can be obtained by a
linear combination of that three colours. That is to say, when we admit subtraction. The
sensation ~as = (a1, a2, a3) in fact means a1~s1 +a2~s2 +a3~s3 when we use the sensors ~s1, ~s2, ~s3

69
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Figure 18.1: When a source emits
monochromatic electro-magnetic ra-
diation at wavelength λj and energy
level E, we have e(λ) dλ = E(λ =
λj). The sensation is thus ~s(λj) =
E(w1(λj), w2(λj), w3(λj)). When
we let λj walk from 0→∞, the sen-
sation ~s(λj) describes a curve in the
three dimensional space spanned up
by the sensors. For short as well as
long wave lengths, all three sensors
are insensitive. Therefore, the curve
starts and ends at the origin, where
we have sensation ”black”.

as a basis. It is equivalent to the sensation ~ac = (α1, α2, α3), which means α1~c1+α2~c2+α3~c3
when we use the three colours ~c1, ~c2, ~c3 as a basis. Because both expressions are equivalent,
we must have that C~α = ~a, or ~α = C−1~a, where

C ≡

 c11 c12 c13

c21 c22 c23

c31 c32 c33

 (18.2)

However, not every choice of the colours as a basis is equally usefull. In the first place,
subtraction is cumbersome from a physical point of view. Small errors in the signals of the
three sensors are enlarged when the colours are close to each other.

It is useful to realize that the eye reduces the energy density function e(λ), consisting
of an infinite number of ”data- points” to just three values collected in ~s. Therefore many
different energy density functions are mapped into the same sensation (i.e. colour). It also
implies that there are many ways to combine different colours to produce a particular one.
The study of different types of colour blindness has contributed a lot in our understanding
of colour perception. A particular type is the absence of one sensor, which means that
the perception is in two rather than three dimensions. Some species of animals have more
than three sensors for electro magnetic radiation. They must be able to distinguish between
different sources, that look the same for us.
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